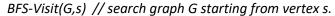
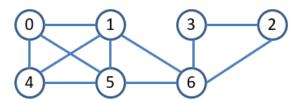
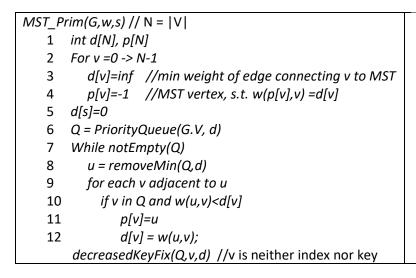

Topological Sorting

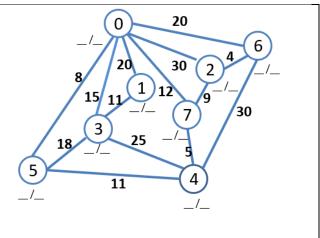

Strongly Connected Components

Vertexes in order finished(black) by DFS:


SCC(G)			

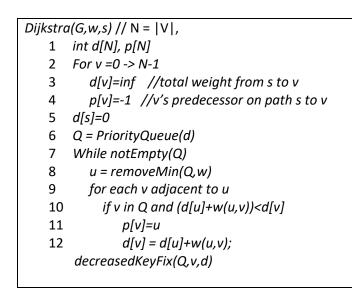
Transposed graph

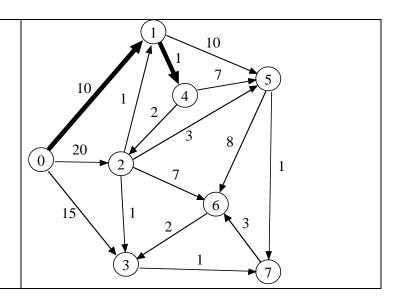



- 1. For each vertex u of G
 - 1. color[u] = WHITE // undiscovered
 - 2. dist[u] = inf // distance from s to u
 - 3. pred[u] = NIL // predecessor of u on the path from s to u
- 2. color[s] = GRAY // s is being processed
- 3. dist[s] = 0
- 4. pred[s] = NIL
- 5. Initialize empty queue Q
- 6. put(Q,s) // s goes to the end of Q
- 7. While Q is not empty
 - 1. u = get(Q) // removes u from the front of Q
 - 2. For each v adjacent to u //explore edge (u,v) // in increasing order
 - 1. If color[v] == WHITE
 - 1. color[v] = GRAY
 - 2. dist[v] = dist[u]+1
 - 3. pred[v] = u
 - 4. put(Q,v)
 - 3. color[u] = BLACK

Representation	BFS time complexity	BFS space complexity
Adj LIST	0()	
Adj MATRIX	O()	

Vertex	0	1	2	3	4	5	6	
d/p								




Finds:

Assuming adjacency list representation for a graph (V,E) give TC: _______ SC: _____

Vertex	0	1	2	3	4	5	6	Vertex added to MST	Edge used
d/p/inMST									

ivist total weight (show work):	
Color or list the edges that are part of the MST:	

Vertex	0	1	2	3	4	5	6	7	Vertex added to SPST	Edge
d/p/inMST										

Shortest path from to
Color or list the edges that are part of the MST: