0-1 Knapsack Problem

Given . , and arrays

Find (rarely)
Have of each item.
(’ ’) ’ (’ ’) ’ (’ ’) ’ (’ ’)
How do we solve it?
1.

Dynamic Programming (DP) Solution

Solve all smaller problems (from problem size O to current problem size) => table
Observations:
Does order of picked items matter? (e.g. 1,2,3 vs 2,1,3?)

What is a problem of size 0? .
What is a problem of size 1? Can I have a single problem of size 1 (regarding items)?

Implementation:
row/column indexes = O
item'’s weight > current weight (column idx) = value of cell 1 row above current cell
item’s weight < current weight (column idx) = max between value of cell 1 row above
current cell & value of current item + value of cell 1 row above it and current weight - current
item's weight columns before current cell

Equations:

sol = matrix/2D array storing answers for (all) smaller pbs TC:

wli] = weight of current item SC:
v[i] = value of current item
k = current weight (column indexes)

sol[0][k] = , for
sol[i][0] = , for
sol[i][K]:

If k<w[i]:

If k 2 wli]:

ID Weight Value Max Weight =

1

2

3

4

sol table below. Indicate in table picked item with "*" and not picked with "."

sol[0][5] =

sol[1][4] =

sol[3][5] =

sol[4][8] =

sol[3][5] = max {

6 7 8

9

10

1

12

13

14

15 16

Backtracking:

Final Value Achieved:

DP solution variations:
- Space saving:

Knapsack problem variations:

1.

Items Picked:

2.

3.

/*Arrays v and w have info from index 1: first item has value v[1]

*/
int knapsackOl (int W, int n, int * v, int * w) {
int sol[n+1] [W+1];
for (k=0; k<=W; k++) { sol[0][k] = 0;}
for(i=1; i<=n; 1i++) {
for (k=0; k<=W; k++) {
sol[i][k] = sol[i-1][k]; // solution without item i
if (k>w[i]) |
with 1 = v[i]+sol[i-1][k-w[i]];
if (sol[i][k] < with 1) { // better choice
sol[i][k] = with i; // keep it

}
}// for k
}// for i
return sol[n] [W];

} // Time: O() Space: O() pseudo polynomial in W

and weight w[1l]

// need O(n) bits to store n items (values and weights) , but only log,(W) bits to store value W

Greedy:

Max Weight =

ID

Weight

Value

Criterion:

Work:

Criterion:

Work:

Optimality:
0/1 Knapsack:
Fractional Knapsack:

Other variations:

Job Scheduling:

Criteria Max Total Value/Profit Max Number of Jobs

Max Value/Length

Max Value

Min Length

Finishes Last

Starts First

Finishes First

Starts Last

Difference between Greedy and Dynamic Programming:

Greedy: Dynamic Programming

Brute Force
Idea:

How many possible combinations of items are there for N items?

How to generate all possible combinations of items?
- Idea
- TC

