Trees (General):

Uses:

[J

[J

[J

[J
Terminology:
Tree:
Root:
Path:
Parent:
Child:
Ascendants:
Descendants:
Node:
Internal Nodes:
Leaves:
Subtree:
Level:
Depth:

Height:

Complete Binary Trees:

Def:

leaves
internal nodes
Height =
Levels =

Drawing:

Ex:

Complete Binary Trees:

Def:
< leaves <
internal nodes
Height =
Levels =

Ex:

Level

Nodes per level

Sum all nodes

Drawing:

Full (Binary) Tree:

Def: Drawing:

If contains X internal nodes:
external nodes
edges/links
total nodes
< height <

Ex:

Binary Trees:

Traversal:

typedef struct TreeNode * TreeNodePT;
struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;
bi

Depth-First Order Traversal using Recursion:

Preorder(TreeNodePT h) { For a tree with N nodes:
TC:
SC:

1

Inorder(TreeNodePT h) {

Postorder(TreeNodePT h) {

Preorder:

Inorder:

PostOrder:

Level-Order Traversal:

BreadthFirstTraversal(TreeNodePT h) {

Count number of Nodes in :

int count(TreeNodePT h) {

Height of Tree:

int height(TreeNodePT h) {

Why can we not assume the height of any binary tree?

Best Case for Binary Tree:

Worst Case for Binary Tree:

Binary Search Tree:

General Search Tree:

Binary Search Tree:

A X B
Y A B
W Y A

Valid Search Path:
Searching for

Given Path:

Valid? If not, why?

Searching for

Given Path:

Valid? If not, why?

Searching for

Given Path:

Valid? If not, why?

Search:

TreeNodePT search(TreeNodePT tree, int data) {

Naive Insertion:
TreeNodePT new tree node(int data in) {

TreeNodePT ndp = malloc(sizeof (struct TreeNode));

ndp->data data in;

ndp->left NULL;
ndp->right = NULL;

return ndp;

TreeNodePT insert (TreeNodePT h, int data) {

Deleting a Node:

Performance of BST:

How does order of insertion affect performance of searching and future insertions? Why do we want to keep
the tree balanced?

How do we randomize the order of insertion?

How should we handle duplicates to balance the tree?

Time Complexity for a Tree with N Nodes:

Finding Min: Leftmost Node (from the root keep going left):
of___)

Finding Max: Rightmost Node (from the root keep going right):
o(____)

Printing in order:

Increasing: Left, Root, Right (inorder traversal)
Decreasing: Right, Root, Left

O() Can we give Theta? O()

Finding Successor of Node X with Key K (go right):
o___)

Finding Predecessor of Node X with Key K (go left):
of___)

Searching for a Value (and not found):
of___)

Build the Tree via N Repeated Insertions:

Of) Best: O) Worst: O()

Deletion of a Node:

(o]) Best: O) Worst: O()

How about space complexity?

Siz

Rotation:

Purpose:

Implementation:

Left rotation:

Code:

Right rotation:

Code:

Original:

Drawing:

Drawing:

