
Tree review

complete tree

• if it has height h the number of nodes is ________

• if it has N nodes, the number of leaves (nodes on the last level) is _________

• if it has N nodes, if each leaf keeps swapping with its parent, until it gets to the root, then one

leaf will do ___________ swaps and all leaves together will do ______________ swaps.

nearly complete tree

• if it has height h the number of node N is: ____ ≤ N ≤ ________

• if it has N nodes, the height is ______

• if it has N nodes, the longest path has length ______

• if it has N nodes, the number of leaves is ____________________

Array traversal using

• idx = idx/2

 for(idx = N; idx >= 1; idx = idx/2) // repeats _____

• left = idx*2, right = idx*2+1

 for(idx = 1; idx <= N; idx = idx*2) // repeats _____

 for(idx = 1; idx <= N; idx = idx*2+1) // repeats _____

 Priority Queues/Heaps:

What is a priority queue or a max-heap?

Uses:

Necessary operations:

Visualizing Heaps in Tree Format:

Drawing out heaps as a tree can make it much easier to understand the relationship certain elements

have with each other based on the indexes they are stored at. However, note that a heap is NOT a

________. It is an ____________ .

Required Tree Properties for a Max-Heap:

- Order of the Elements

- Values at children indexes/nodes are ______ than values at their parent indexes/nodes

- Items must respect order only along ___________. Nodes in 2 subtrees have ________

- Shape of the Tree

- The tree is a ___________________

- There are no _________

- All levels are complete but possibly the ______________

- If not complete, all nodes are to the ________ on the last level

Ex: Heap array

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Index computation when 1
st

 item is at index 1 (root is at index 1)

int left(int idx) {return idx*2 ;}

int right(int idx) {return (idx*2)+1 ;}

int parent(int idx) {return idx/2 ;}

E.g.:

left(4) -> ________________________

right(4) -> ________________________

parent(4)-> ________________________

left(5) -> ________________________

right(5) -> ________________________

parent(5)-> ________________________

Inserting New Item:

1.) Increase size of array and add a new element to end

2.) Continually compare and swap new element with elements at the parent indexes until heap order is

correct again (Perform swimUp())

 swimUp(int* A, int idx){

 }

 TC:

 SC:

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Original Heap:

Add ________. Show the new heap below

and affected/swapped elements on the

original heap to the left.

Remove() - will remove the top item

1.) Swap the first element in the array with the last element in the array

2.) Reduce the size of the array being dealt with (This is done not by physically altering the array

but by altering the size input provided to the function so the last element in the array is ignored)

3.) Continually compare and swap the new element at the beginning of the array with the element at

one of the children indexes which has the largest value until heap order is correct again (Perform

sinkDown())

4.) Return the element stored at the end of the array

TC: _________ SC: __________

int idxOfMaxValue(int* A,int p,int le,int ri,int N){

}

TC: _________ SC: __________

sinkDown(int* A, int p, int N){

}

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Original Heap:

Remove ________. Show the new heap

below and affected/swapped elements on

the original heap t the left.

Batch Initialization of Heap:

• Bottom Up Batch: Turns an array into a heap by reordering its elements to fit

requirements for heap order

 buildMaxHeap(int* A, int N) {

 }

TC:

SC:

• Top Down Batch: Builds a heap by repeated insertions in an originally empty heap

TC:

SC:

Heapsort:

Implementation:

Code:

Heapsort(int* A,int N){

}

TC:

SC:

Stable? ________________ Adaptive? _______________

Index 0 1 2 3 4 5

Original

Array

Heap

Removal 1

Removal 2

Removal 3

Removal 4

Removal 5

Variations:

What are the required adjustments to create a min heap instead of a max heap?

When would it be better to use a min-heap?

