
1

Homework 6: CSE 3318

About the Assignment
In this assignment, you will complete the program provided to implement Bucket Sort. Starter code is

provided, along with unit tests to ensure correct implementation. You must use the bucket sort

algorithm as described in class to earn credit. The goal is to write code that reads numbers from a file as

an array and sorts the array using Bucket Sort.

Provided Files
1. list.c and list.h: These provide the Linked List structure as well as utility functions.

2. makefile: Provides the build scripts.

a. To compile, simply use the command: make .

i. To force recompilation of all files use: make -B

b. Run with ./unit_tests

c.

3. main.c: Contains unit tests to test each utility function (e.g. reading array from file or finding

the min in an array). The final test functions test your code on each of the data files. E.g. int
test_sorting_data1() will test that your code correctly opens the file, reads the data and

sorts the array given in file data1.txt.

4. bucket_sort.h: Contains signatures for the functions you will implement.

5. bucket_sort.c: Code and helper functions implementing Bucket Sort. ONLY MODIFY THIS

FILE. This is the ONLY .c file you will submit.

6. data.txt, data1_rev.txt, data2.txt, neg1.txt, dex1.txt: Test files to read

numbers from and sort. These have Unix files (they have the Unix EOL symbols).

File format:

The first line of each input file contains a single integer N, denoting the size of the array.

The second line of each input file contains N space-separated integers corresponding to the N

elements of the array.

Example:

6

9 1 7 5 8 2

means the size of the array will be 6 and the array will be {9,1,7,5,8,2}.

Note: All your work will be done in bucket_sort.c.

2

Step – 1: Open the file.
In bucket_sort.c, complete the function FILE *openFile(char *filename).

It takes the name of the file (a string called fileName) as input and returns the file handle of the

opened file. Do not close the file. If the file does not open, the function must print the string "Could
not open file. Exiting.\n".

Step – 2: Read data from the file.
Complete the function called int readSizeFromFile(FILE *fp) that simply reads an integer

from the file and returns it.

Then, complete the function called int *readArrayFromFile(FILE *fp, int N) that

dynamically allocates an integer array of size N, fills it up by reading N integers from the file with the

given file handle fp, and finally returns the array.

At this point, if done correctly, the first set of tests to open files should pass.

Step – 3: Compute minimum and maximum

values from the array.
Now, implement functions int min_element(int *arr, int N) and int
max_element(int *arr, int N) which return the minimum and maximum values respectively

in the passed nonempty array arr of size N. For example for array {9,1,7,5,8,2} max is 9 and min is 1.

If correctly done, the next set of tests related to min and max values should pass.

Step – 4: Compute bucket indexes.
Complete the function called int bucket_index(int element, int min, int max,
int N) that computes and returns the index of an element's bucket. This should be done using the way

discussed in class with the formula that uses the min and max values in the array.

E.g. bucket_index(7, 1, 9, 6) returns 4 Here element = 7 , min = 1 , max = 9, N = 6 then

the bucket index is computed using: round_down(((7-1)/(9-1+1))*6)

More examples:

bucket_index(9, 1, 9, 6) returns 5
bucket_index(1, 1, 9, 6) returns 0
bucket_index(7, 1, 9, 6) returns 4
bucket_index(5, 1, 9, 6) returns 2
bucket_index(8, 1, 9, 6) returns 4
bucket_index(2, 1, 9, 6) returns 0
At this point, the next set of tests related to computing bucket indexes should pass.

3

Step – 5: Insert elements into the right

buckets.
Now, implement the function nodePT *putIntoBuckets(int *arr, int N) that uses our

auxiliary functions defined so far, dynamically allocates an array of linked lists and inserts each element

of our original array into its corresponding linked list bucket.

E.g. for {9,1,7,5,8,2}, we have: min=1, max = 9, N=6 and generate bucket indexes:

9 => bucket index : 5

1 => bucket index : 0

7 => bucket index : 4

5 => bucket index : 2

8 => bucket index : 4

2 => bucket index : 0

At this point, the next set of tests labelled buckets should pass.

Step – 6: Putting it all together.
Finally, implement int *run_bucket_sort(char *fileName) that uses our functions to read

an array from a file, sort it and return it. It must free all the buckets and other heap allocations it makes

at the end (except the array it returns).

Now, all tests should pass.

Specifications
1. Files will always have the above format.

2. The filename (entered by the user) will have at most 50 characters.

3. Let N be the number of elements in an array in a file. Then 1 ≤ N ≤ 10000 .

4. There is no limit for the length of the second line in the file (the line that contains the elements

in the array).

5. The numbers from the file must be stored in an array of integers.

6. Do not make a copy array. The only arrays in your program should be: the array of int in which

you load the data from the file, and the array of pointers to linked lists. There should not be any

other array. (The nodes from the linked lists are fine. They are not considered a copy array.) - 10

points deducted otherwise.

7. The linked lists for the buckets must be maintained sorted: when a new node is inserted in a

sorted list, it will be inserted in the correct location so that the list will be sorted after the

insertion. Review our linked lists lectures. We solved this in class.

8. There are no errors in Valgrind.

4

Resources and Hints
1. See resources:

1. See video in Canvas->Homework 6 for a brief explanation for using an array of linked lists

and inserting in a sorted linked list.

2. Review the lecture on bucket sort as we discussed details relevant for this specific

homework (e.g. index calculation, inserting in a sorted linked list and using an array of

linked lists, issues with overflow).

2. If your indexes are not correct, the main causes are:

1. integer division in C. E.g. 6/9*6 = (6/9)*6 = 0*6 = 0 (b.c. 6/9 = 0).

2. overflow. File dex1.txt covers a special case: it includes the minimum and maximum

values possible for a 4 byte int, which may cause an overflow in the index calculation.

3. Solution: when you perform, or store intermediate calculations, you can use any data

type you want; it does not have to be the type of the input or the output. For example,

the input are ints, but when you compute the index, you can cast them to double and/or

use other values of type double. That should handle both issues 2.1 and 2.2 from above.

Note that you should use casting and/or a few local variables of type double, not an

entire array of double.

3. For a review of my linked lists implementation see slides Linked Lists in C REVIEW and the four

Linked Lists videos (under Canvas-> Modules->Linked Lists). More resources on linked lists are

posted in Canvas->Modules->Linked Lists->"Linked Lists page", including references to solved

problems.

4. You can use this visualization for how bucket sort works, but in your solution do not use their

formula for index calculation, use our formula with min and max.

Grading Rubric
8 pts - style

10 pts - all 23 tests passed. No partial credit. If a single test fails, all 10 points are lost.

 9 pts = 3 pts * 3 tests for the test_open_XXXX tests (3 pts * 3 tests => 9pts)

 6 pts = 3 pts * 2 tests for test_min, test_max (3 pts each)

15 pts = 3 pts * 5 tests for the test_min_max_XXXX tests

20 pts = 4 pts * 5 tests for the test_bucket_index_XXXX tests

12 pts = 4 pts * 3 tests for the test_buckets_XXXX tests

20 pts = 4 pts * 5 tests for the test_sorting_XXXX tests

See grading example at the end of the document.

The code will be inspected. The functions must use the method covered in class to get the credit.

If a test passed but it was hardcoded somehow or it used another method, that test receives 0 credit.

file:///C:/Users/astefanxx/OneDrive%20-%20University%20of%20Texas%20at%20Arlington/courses/3318_2023_Spring/hw/lectures/04_linked_lists/04_LL_C_review.pdf
https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

5

Final Submission
Submit only the bucket_sort.c file. Do not archive it in any way. It must contain your name and student

ID at the top as a comment.

Sample runs
Sample run when all tests passed

Run command:

make -B

Run command:

./unit_tests

See output:

RUNNING TEST: test_open_data1

==

RUNNING TEST: test_open_data2

==

RUNNING TEST: test_open_dex1

==

RUNNING TEST: test_min

==

RUNNING TEST: test_max

==

RUNNING TEST: test_min_max_data1

==

RUNNING TEST: test_min_max_data1_rev

==

RUNNING TEST: test_min_max_dex1

==

RUNNING TEST: test_min_max_data2

==

RUNNING TEST: test_min_max_neg1

==

RUNNING TEST: test_bucket_index_data1

==

RUNNING TEST: test_bucket_index_data1_rev

==

RUNNING TEST: test_bucket_index_data2

==

RUNNING TEST: test_bucket_index_dex1

==

RUNNING TEST: test_bucket_index_neg1

==

RUNNING TEST: test_buckets_data1

==

RUNNING TEST: test_buckets_data1_rev

==

RUNNING TEST: test_buckets_neg1

6

==

RUNNING TEST: test_sorting_data1

==

RUNNING TEST: test_sorting_data1_rev

==

RUNNING TEST: test_sorting_dex1

==

RUNNING TEST: test_sorting_neg1

==

RUNNING TEST: test_sorting_data2

==

.......................

OK: 23

Sample run when all tests failed. This is what you get for the starter code
Run command:

make -B

Run command:

./unit_tests

See output:

RUNNING TEST: test_open_data1

ERROR: main.c:24 assertion failed: "fp != NULL"

File failed to open.

==

RUNNING TEST: test_open_data2

ERROR: main.c:42 assertion failed: "fp != NULL"

xFile failed to open.

==

RUNNING TEST: test_open_dex1

ERROR: main.c:60 assertion failed: "fp != NULL"

xFile failed to open.

==

RUNNING TEST: test_min

ERROR: main.c:79 expected -123, actual: min_computed

==

RUNNING TEST: test_max

ERROR: main.c:90 expected 100, actual: max_computed

==

RUNNING TEST: test_min_max_data1

ERROR: main.c:100 assertion failed: "fp != ((void *)0)"

==

RUNNING TEST: test_min_max_data1_rev

ERROR: main.c:117 assertion failed: "fp != ((void *)0)"

==

RUNNING TEST: test_min_max_dex1

ERROR: main.c:134 assertion failed: "fp != ((void *)0)"

==

RUNNING TEST: test_min_max_data2

7

ERROR: main.c:151 assertion failed: "fp != ((void *)0)"

==

RUNNING TEST: test_min_max_neg1

ERROR: main.c:168 assertion failed: "fp != ((void *)0)"

==

RUNNING TEST: test_bucket_index_data1

ERROR: main.c:185 assertion failed: "fp"

==

RUNNING TEST: test_bucket_index_data1_rev

ERROR: main.c:209 assertion failed: "fp"

==

RUNNING TEST: test_bucket_index_data2

ERROR: main.c:233 assertion failed: "fp"

==

RUNNING TEST: test_bucket_index_dex1

ERROR: main.c:257 assertion failed: "fp"

==

RUNNING TEST: test_bucket_index_neg1

ERROR: main.c:281 assertion failed: "fp"

==

RUNNING TEST: test_buckets_data1

ERROR: main.c:325 assertion failed: "fp"

==

RUNNING TEST: test_buckets_data1_rev

ERROR: main.c:360 assertion failed: "fp"

==

RUNNING TEST: test_buckets_neg1

ERROR: main.c:395 assertion failed: "fp"

==

RUNNING TEST: test_sorting_data1

ERROR: main.c:444 assertion failed: "fp"

==

RUNNING TEST: test_sorting_data1_rev

ERROR: main.c:465 assertion failed: "fp"

==

RUNNING TEST: test_sorting_dex1

ERROR: main.c:486 assertion failed: "fp"

==

RUNNING TEST: test_sorting_neg1

ERROR: main.c:508 assertion failed: "fp"

==

RUNNING TEST: test_sorting_data2

ERROR: main.c:529 assertion failed: "fp"

==

xxxxxxxxxxxxxxxxxxxxx

OK: 0 FAILED: 23

8

Example Grading
For example, the code below would lose 27 pts from the 92 pts for code correctness:

 - 10 pts (because one or more tests failed)

 - 17 pts from the 5 failed tests highlighted below

 ./unit_tests

RUNNING TEST: test_open_data1

==

RUNNING TEST: test_open_data2

==

RUNNING TEST: test_open_dex1

==

RUNNING TEST: test_min

ERROR: main.c:79 expected -123, actual: min_computed --------> 3 pts lost

==

RUNNING TEST: test_max

==

RUNNING TEST: test_min_max_data1

==

RUNNING TEST: test_min_max_data1_rev

==

RUNNING TEST: test_min_max_dex1

ERROR: main.c:142 expected -2147483648, actual: min_computed---------> 3 pts lost

==

RUNNING TEST: test_min_max_data2

==

RUNNING TEST: test_min_max_neg1

ERROR: main.c:176 expected -10, actual: min_computed ---------> 3 pts lost

==

RUNNING TEST: test_bucket_index_data1

==

RUNNING TEST: test_bucket_index_data1_rev

==

RUNNING TEST: test_bucket_index_data2

==

RUNNING TEST: test_bucket_index_dex1

ERROR: main.c:272 expected testArr[i], actual: index_computed[i]

...x...x.x...Bucket index computed incorrectly. ---------> 4 pts lost

==

RUNNING TEST: test_bucket_index_neg1

==

RUNNING TEST: test_buckets_data1

==

9

RUNNING TEST: test_buckets_data1_rev

==

RUNNING TEST: test_buckets_neg1

==

RUNNING TEST: test_sorting_data1

==

RUNNING TEST: test_sorting_data1_rev

==

RUNNING TEST: test_sorting_dex1

ERROR: main.c:498 expected arr[i], actual: test_sorted[i] ---------> 4 pts lost

==

RUNNING TEST: test_sorting_neg1

==

RUNNING TEST: test_sorting_data2

==

x......x..

OK: 18 FAILED: 5

