
O (BigOh) - motivation, calculate O for simple code1.
2 or more variables in O expression2.
O - arithmetic3.

Function definition1.
Function calls2.

TC of functions4.

for-loops : 4 possible cases1.
while loops - same concept as for for-loops2.
See Math review for summations in beginning of 3.
Time complexity of loops

TC of loops5.

give worst case, 1.
if possible, look at best and average cases as well2.

TC for conditionals (if statements) 6.

Definitions1.
Usage2.
Properties3.
Same arithmetic as for O 4.

O, Θ (Theta), Ω (Omega)7.

lg(1)+lg(2)+lg(3)+….+lg(N-1)+lg(N) Can you find a lower and/or upper bound for this?a.
1*2*3*…*N Can you find a lowerbound for this?b.

Can you find upper and/or lower bounds for:1.
Upper bounding and lowerbounding when we cannot compute an exact TC8.

See Practice problems throughout this document and also on the web, on the Slides page: 9.
PRACTICE time complexity of loops, Solution to problems A6-A16 except A15 (pdf, docx)

From <https://ranger.uta.edu/~alex/courses/3318/slides.html>

Time complexity and growth of functions summary
Tuesday, January 25, 2022 7:56 AM

 TC-notes Page 1

https://ranger.uta.edu/~alex/courses/3318/lectures/02_loops_TC.pdf
https://ranger.uta.edu/~alex/courses/3318/practice/Loop%20practice.pdf
https://ranger.uta.edu/~alex/courses/3318/practice/LoopsTC_solutions.pdf
https://ranger.uta.edu/~alex/courses/3318/practice/LoopsTC_solutions.docx
https://ranger.uta.edu/~alex/courses/3318/slides.html

The exact count of instructions is often a polynomial function of N (input size)a)
The term with the highest exponent dominates the time (see 31 years vs 1.6 minutes)b)
=> keep only that dominant term: drop lower order terms and drop constant

100N+3N2+1000 = O(N2)a.
200N + 1000 = O(N)b.

Examplesc)

O(1): 35 = 35*N0 = O(1) ; 100 = O(___) d)
We will be able to compute O of large piece of code using O of its smaller components .e)
After Assume We have programs P1, P2, P3, P4 and P5 , P6with the time complexities given in the table.
Further assume that each program takes 1 hour to finish, when its input size is N = 1000. - new problem

f)

Program 1
O(N)

Program 2
O(N2)

Program 3
O(N3)

Program 4
O(2N)

Program 5
O(log2N)

Program 6
O(1)

N= 1000 1 hr 1 hr 1hr 1hr 1hr 1hr

N=10000
(input size is 10 times bigger)

O-Functions, their growth, and how that affects the scalability of a program1.

Assume

Company A implemented function:
void processArr_CA(int arr[], int N) // where N is the number of elements in arr

that executes 100N+3N2+1000 instructions.
We will say that this function is O(N2) .

Company B implemented function:
void processArr_CB(int arr[], int N) // where N is the number of elements in arr

that executes 200N+1000 instructions.
We will say that this function is O(N) .

The table below will help understand why O(N2) and O(N) are used instead of the exact instruction count.

Assume you run this function on a machine that executes 109 instructions per second.

 (Review: Sample time calculation: 10000 instructions will take: 10000/109 = 10-5 seconds)

Values in table are approximations (not exact calculations).

N N2 3N2 100N 1000

104 Instructions:
Time: 0.1sec

Instructions:
Time: 0.3sec

Instructions:
Time: 0.001sec

Instructions:
Time: 10-6 sec

109 Instructions:
Time: 31 yrs

Instructions:
Time: 95 yrs

Instructions:
Time: 100sec = 1.6 min

Instructions:
Time: 10-6 sec

We care about behavior for very large input size (as N goes to infinity).

Intuition behind using O2.

https://www.desmos.com/calculator

Time complexity: BigOh - part 1

 TC-notes Page 2

https://www.desmos.com/calculator

See the different shapes of the functions for each term, and see their growth.
See how the shape of the entire function, 3N2+4N+4, is determined by (looks mainly like) the function
for the dominant term ,3N2 .

steps for identifying the dominant term 3.

There may be more than 1 dominant term, when we have multiple variables.a.

Identify dominant term: the term with the largest exponenta)

Remove all lower order terms (with smaller exponents)b)

Remove the constant of the dominant termc)

processArr_CA : 100N+3N2+1000 = O(N2)

 100N+3N2+1000N0 = O (__)

processArr_CB: 200N + 1000 = O(N)

Steps

(5N2)/2 + 1000N+500 = O(_____)a)

N2 - 1000N+700 = O(_____)b)

Practice:

 TC-notes Page 3

O - behavior as data size is very large (goes to infinity)1.

Identify dominant terma.
Drop lower order terms b.
Drop constant of dominant termc.
E.g. d.

Steps: 2.

Do NOT say O(35), O(10), etca.
O(1) - always use O(1) for constants (think N0=13.

for O, I may say: "BigOh" or "order of" or "growth"a.
E.g.: for O(N2) I may say: "BigOh of N2", "order of N2", "N2 growth"b.

Terminology: 4.

 a.

 b.

 c.

 d.

 e.

Practice:5.

Getting started with O

Multiple Variables
What if we have two or more arrays (or variables that control the repetitions)?
...

printf("%d, ", users[j]);
for(j=0; j<N; j++){

}

printf("%d, ", movies[k]);
for(k=0; k<T; k++){

}
…

The above code has O(_____)a)

N + M = O(______)b)

N2 + M + N + 35 = O(_________)c)

N2M + M2N = O(_________)d)

N2 + M2 + N2M2 = O(_____________)e)

Solve:a)

N is large, M is small => term N dominates term Ma)
N is small, M is large => term M dominates term Nb)
=> I can see that I should keep both N and M => O(N+M)c)
I should also consider the case when both M and N are large, and see if that would have a new dominant term. d)

Process: when multiple variables are present, consider ALL combinations of some variable(s) having a large value, and
others having a small value. E.g. in order to compute O() for expression N + M I will look at:

b)

Check your answersc)

TC - multiple variables and O arithmetic
Sunday, January 23, 2022 7:31 AM

 TC-notes Page 4

O arithmetic

O(N) + O(S) = O(N+S)a)

Add and keep the dominant terms:d)

O(N) + O(S+N2) + O(U) = O(N+S+N2+U) = O(S + N2 + U) (we removed the lower order term N)a)

Add and drop the lower order terms:e)

O(N)* O(k) = O(Nk)a)

O(N)* O(1) = O(N)b)

O(N)* 7 = O(N)c)

Multiplication:f)

In a summation “pull O out”:

 g)

E.g. to show that O(N)* O(k) = O(Nk), say f(N) = cN+d=O(N) and g(k) = ak+b (note here N and k are variables,
c,d,a,b are constants).

a)

f(N)*g(k) = (cN+d)*(ak+b) = caNk + cbN + dak + db where the variables are N and k. Note that db is a constant =>
Dominant term is Nk (Nk dominates N, and Nk dominates k, NK dominates db) => when we take O() we have:
f(N)*g(k) = (cN+d)*(ak+b) = caNk + cbN + dak + db = O(Nk)

If it is not clear why the above properties are correct, replace O() with a function that has that O(), e.g. replace O(N) with
cN+d or 9N+100, do the math calculation and then the O() for that final expression.

h)

E.g. to fing O for : O(N) + O(S+N2) + O(U) + O(N) + O(T)*O(T)a)

If the notation with O is confusing and , simply remove the O from the expression, simplyfy the expression if possible
and then find O for the new expression.

i)

 N + S + N2 + U + N + T*T = 2N + S + N2 + U + T2 = O(S+N2+U+T2)
 write without O : simplify: calculate O:

j)

O(1) + O(1) + O(1) + O(1) = _________a)

O(1) + O(N) = ___________b)

O(1) + O(N2) = ___________c)

O(N) + O(N2) = ___________d)

O(M) + O(N) = ______________e)

M * O(N) = ___________f)

O(M) * O(N) = ___________g)

Practice problems:k)

 TC-notes Page 5

!!! do not just use O(N) even though you may have the correct understanding. It can lead
you to make mistakes.

a.
variables used must be from the code being analyzed1.

E.g. if nums1 is an array and text is a string, do not say "O(nums1)" or "O(text)". Use their
lengths.

a.
use quantities (not arrays)2.

E.g. function or piece of code iterates up to strlen(text), chose a variable, say L, and

explain that L that is the length of text. Note this is all a mathematical notation on paper.
We are not talking about modifying the program.

a.

DEFINE new variables for the size of the data that the program uses, if needed (if that variable is
not in the program).

3.

O() of function definition1.

map function arguments in function call to those in function definition and O.1.
Pay attention to library functions. Since you do not see their definition, it may seem that they are
O(1), but they may not be.

2.

O() of function call 2.

strlen(s) - computes the length of string s by looking at each character in s until it finds '\0',
Therefore it will have time complexity O(length(s))

1.

printf("%d", nums[k]) ; is constant, O(1), because array access with [] is constant
(for nums[k]) and printing an integer is a fixed operation. It does not depend on the length
of nums.

a.
printf("%s", text); has to print each character of text, thus it will also have O(length(text)).2.

Be careful when analyzing string function calls in C . It may be different in other languages (e.g. if the
length is stored as a member variable for an object, instead of computed as it is for strings in C). E.g.:

3.

4. See problems from TC-Practice 1 and web practice

TC - functions
Tuesday, January 25, 2022 8:00 AM

 TC-notes Page 6

Should I study from the slides of these notes?
The slides are more concise.
These notes try to follow all my steps and reasoning.
Run the code if needed.

Fun problem:

What is the TC of the code below? Note: k=1 and k<0. How many times does the loop repeat? O(___)

printf("A");

for(k=1; k<0; k++){

}

1. Pay attention to each instruction in the code.
Solve one loop at a time.2.
When nested loops, solve them from innermost to outter most (one loop at a time). Use the time
complexity (TC) of the entire inner loop when calculating the time complexity of one iteration of
the outter loop.

3.

If sequential loops, add their time complexities.4.
Pay attention to function calls.5.

Idea

Examples and motivation for the used template

Simple loop example: Example A

O(__________)

printf("A");

for(k=0; k<M; k++){ //O(M)

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

How many As are printed when N is 7 and M is 10? Can you express this as a function of N and M?

A,A,….,A (10 of A on each row)
A,A,….,A
…
A,A,….,A
For 7 rows in total => 7*10 = 70 of A printed.
As a function of N and M : N*M (N rows by M columns of A)
=> TC is O(NM)
For simple loops like this one, to get the TC, you can focus on the innermost instruction
(printf("A")) and count or estimate how many times that executes.

TC - loops
Tuesday, January 25, 2022 7:25 AM

 TC-notes Page 7

(printf("A")) and count or estimate how many times that executes.

But this method may fail if we have functions or more difficult loops.

To make my discussion more uniform, (so that it will be the same regardless of what code I am
analyzing), I would compute O() for the for-k loop, and use that in analyzing the for-j loop.

// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(j=1; j<=N; j=j+1){

 res = linear_search(nums1,M,7); // O(M)

 printf("index = %d\n", res);

}

Consider case 1 from Time complexity of loops that has a function call.

Hard loop example: Example D

Note: j=j*2 and k<j

O(__________)

printf("D");

for(k=0; k<j; k++){

}

printf("\n");

for(j=1; j<=N; j=j*2){

}

This is one of the most difficult loops. Here it is non-trivial to even find out how many D are
porinted on each line.
The template below will help us solve it. But before attempting this one, we will solve some
easier ones first.

Template:
for-t: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

Here TC1iter (____) is the time complexity of the code executed in ONE iteration of the loop. We do not
worry about how many tiems the loop repeats at this point. Find O for just this part.
Why do this? So that we decompose our loop.
Note: this template is particularly useful for complex loops, but it can be applied to the trivial ones as

 TC-notes Page 8

https://ranger.uta.edu/~alex/courses/3318/lectures/02_loops_TC.pdf

Note: this template is particularly useful for complex loops, but it can be applied to the trivial ones as
well.

What is TC1iter for the Example A and Case 1 above? How simmilar are these two examples?
1iter = all instructions executed in one iteration of the loop
TC1iter is the time complexity fo those instructions (I do NOT worry about the repetitions)

Example A
O(__________)

printf("A");

for(k=0; k<M; k++){

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

Case 1:

// Assume int linear_search(int* ar, int T, int v) has TC O(T)
for(j=1; j<=N; j=j+1){

 res = linear_search(nums1,M,7); //

 printf("index = %d\n", res);

}

TC1iter(j)=O(1)+O(M)+O(1)+O(1) = O(M)

ALSO OK: TC1iter(j)= O(1)+O(M) = O(M)

 TC1iter(j)= O(M)

TC of entire for-j loop is: N repetitions * TC1iter(j) = N*O(M) = O(NM)

Solved example 5 from TC-practice 1:
E.g. for loop:
int ct = 0;

ct++;

if (text[k] == 'A'){

}

for(int k=0; k<strlen(text); k++) {

}

Condition: k<strlen(text) ---> O(L) where L is length of text

ct++;

if (text[k] == 'A'){ -------> O(1)

}

Body of loop:

Update: k++ ---> O(1)

The code executed in one iteration is:

=> TC1iter(k) = O(L)+O(1)+O(1) = O(L)

The loop repeats L times and in each iteration it does O(L) => total time complexity for the loop: L*O(L) =
O(L2)
This example shows that we cannot assume the condition of the loop is O(1).
*** Note that the compiler may be optimizing this code and only calculate strlen(text) one time, save it,
and then reuse it for the following loop iterations. In that case, the actual code executed would use

 TC-notes Page 9

and then reuse it for the following loop iterations. In that case, the actual code executed would use
k<var which is O(1) and the entire loop will be O(L).

 TC-notes Page 10

When giving TC, we give the WORST case.1.
If possible, analyze and give best and average case as well.2.

TC - conditionals (if)
Saturday, January 22, 2022 7:28 PM

 TC-notes Page 11

log and exponentiation

 1.

 a.

 b.

Examples:2.

 a.

 * b.
 c.

Properties:3.

Exponentiation

We will use for . E.g. . 1.
 2.

 (b.c.

)3.

 a.

 b.

 c.

Examples:4.

 i.
 ii.
 iii.

 a.

 b.

E.g. i.

 c.

E.g. i.
This is important as it shows that a function of N that may look like an exponential,

 , is in fact a polinomial, .

ii.

 (think that a and N can swap places)d.

Properties of log:5.

log

Math review - log
Sunday, January 23, 2022 8:17 AM

 TC-notes Page 12

See first pages in slides: Time complexity of loops

and the Cheat sheet (1 page)

Math review - summations
Tuesday, January 25, 2022 7:19 AM

 TC-notes Page 13

https://ranger.uta.edu/~alex/courses/3318/lectures/02_loops_TC.pdf
https://ranger.uta.edu/~alex/courses/3318/lectures/_cheatsheet_1PAGE.pdf

O for expressions with multiple variables

printf("%d, ", users[j]);

for(j=0; j<N; j++){

}

printf("%d, ", movies[k]);

for(k=0; k<T; k++){

}

a) The code below has O(_____)

N + M = O(______)b)

N2 + M + N + 35 = O(_________)c)

N2M + M2N = O(_________)d)

N2 + M2 + N2M2 = O(_____________)e)

Solve:a)

Example 1
// Assumes array nums has X elements.

int idx = X/2;

int val = nums[idx];

return val;

int middle_pos_elem(int nums[], int X){

}

Example 2A
// Assumes array nums has X elements.

printf(nums[j]);

for (int j=0; j<10; j++)

void first_ten_1(int nums[], int X){

}

Example 3
/* Sample calls:

 ...

 count1 = count(arr1, N, 35);

 ...

 countN = count(arr2, L, N);

 ...

*/

// Assumes array nums has N elements.

int ct = 0;

printf("\n Counting occurrences of %d in array ...\n", V);

printf("%4d|", nums[k]);

ct++;

if (nums[k] == V)

for(int k=0; k<N; k++) {

}

printf("\n");

return ct;

int count(int nums[], int N, int V){ //

}

The function defintiona)
The code that includes the two function callsb)

Give TC (Time complexity) of:

Example 2B
// Assumes array nums has X elements.

count(nums, X, 35); //defined below

for (int j=0; j<10; j++)

void first_ten_2(int nums[], int X){

}

Functions and function calls
Compute O() for the function defintions below

TC - practice 1
Saturday, January 22, 2022 7:09 PM

 TC-notes Page 14

The code that includes the two function callsb)

Example 4
// Assumes array nums has N elements.

int count = 0;

//printf("(%d,%d), ",arr[j], nums[k]);

count++;

for(int k=0; k<N; k++) {

}

for(int j=0; j<N; j++) {

}

return count;

int count_pairs(int nums[], int N){

}

Example 5
// sample call: count_A(poem) , where poem is a string

int ct = 0;

ct++;

if (text[k] == 'A'){

}

for(int k=0; k<strlen(text); k++) {

}

return count;

int count_A(char * text){

}

Example 6
// sample call: print_counting_sheep(7,"sheep");

printf("%3d %s\n", k, animal);

for (int k=0; k<X; k++){

}

printf("\n");

void print_counting_sheep(int X, char * animal){

}

 TC-notes Page 15

Compute O() for each code piece below.
Assume all needed variables are declared and initialized. Assume the code is correct.

Example A

O(__________)

printf("A");

for(k=0; k<M; k++){

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

How many As are printed when N is 7 and M is 10? Can you express this as a function of N and M?

Example B. Note: k<j

O(__________)

printf("B");

for(k=0; k<j; k++){

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

How many Bs are printed when N is 7? How about when N is 8? Can you express this as a function of N?

Example C. Note: j=j*2

O(__________)

printf("C");

for(k=0; k<M; k++){

}

printf("\n");

for(j=1; j<=N; j=j*2){

}

a) What values does j take when N is 8? How about when N is 16? Can you express this as a function of N?

b) How many Cs are printed when N is 8? How about when N is 16? Can you express this as a function of N?

TC - practice 2
Tuesday, January 25, 2022 8:17 AM

 TC-notes Page 16

Example D. Note: j=j*2 and k<j

O(__________)

printf("D");

for(k=0; k<j; k++){

}

printf("\n");

for(j=1; j<=N; j=j*2){

}

a) What values does j take when N is 8? How about when N is 16? Can you express this as a function of N?

b) How many Ds are printed when N is 8? How about when N is 16? Can you express this as a function of N?

Example E

O(__________)
// Assume int linear_search(int* ar, int T, int v) has TC O(T

res = linear_search(nums1,M,7); // Assume you are told that this line is O(M)
printf("index = %d\n", res);

for(j=1; j<=N; j=j+1){

}

Example F

O(__________)
// Assume int linear_search(int* ar, int T, int v) has TC O(T

res = linear_search(nums1,j,7); // note j
printf("index = %d\n", res);

for(j=1; j<=N; j=j+1){

}

 TC-notes Page 17

Compute O() for each code piece below.
Assume all needed variables are declared and initialized. Assume the code is correct.

Example A

O(__________)

printf("A");

for(k=0; k<M; k++){

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

How many As are printed when N is 7 and M is 10? Can you express this as a function of N and M?

Example A: N=7, M=10
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA

for-k: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

for-j: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

Example B. Note: k<j

O(__________)

printf("B");

for(k=0; k<j; k++){

}

printf("\n");

for(j=1; j<=N; j=j+1){

}

How many Bs are printed when N is 7? How about when N is 8? Can you express this as a function of N?

TC - practice 2-solution
Tuesday, January 25, 2022 8:17 AM

 TC-notes Page 18

}

printf("\n");

}

How many Bs are printed when N is 7? How about when N is 8? Can you express this as a function of N?

Example B: N=7
B
BB
BBB
BBBB
BBBBB
BBBBBB
BBBBBBB

for-k: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

for-j: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

Example C. Note: j=j*2

O(__________)

printf("C");

for(k=0; k<M; k++){

}

printf("\n");

for(j=1; j<=N; j=j*2){

}

a) What values does j take when N is 8? How about when N is 16? Can you express this as a function of N?
b) How many Cs are printed when N is 8? How about when N is 16? Can you express this as a function of N?

Example C: N=8, M=10
j= 1, CCCCCCCCCC
j= 2, CCCCCCCCCC
j= 4, CCCCCCCCCC
j= 8, CCCCCCCCCC

Example C: N=16, M=10
j= 1, CCCCCCCCCC
j= 2, CCCCCCCCCC
j= 4, CCCCCCCCCC
j= 8, CCCCCCCCCC
j= 16, CCCCCCCCCC

Example C: N=32, M=10
j= 1, CCCCCCCCCC
j= 2, CCCCCCCCCC
j= 4, CCCCCCCCCC
j= 8, CCCCCCCCCC
j= 16, CCCCCCCCCC
j= 32, CCCCCCCCCC

for-k: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

 TC-notes Page 19

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

for-j: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

Example D. Note: j=j*2 and k<j

O(__________)

printf("D");

for(k=0; k<j; k++){

}

printf("\n");

for(j=1; j<=N; j=j*2){

}

a) What values does j take when N is 8? How about when N is 16? Can you express this as a function of N?
b) How many Ds are printed when N is 8? How about when N is 16? Can you express this as a function of N?

Example D: N=8
j= 1, D
j= 2, DD
j= 4, DDDD
j= 8, DDDDDDDD

Example D: N=10
j= 1, D
j= 2, DD
j= 4, DDDD
j= 8, DDDDDDDD

Example D: N=16
j= 1, D
j= 2, DD
j= 4, DDDD
j= 8, DDDDDDDD
j= 16, DDDDDDDDDDDDDDDD

for-k: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

for-j: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

 TC-notes Page 20

Example F

O(__________)
// Assume int linear_search(int* ar, int T, int v) has TC O(T)

res = linear_search(nums1,j,7); // note j

printf("index = %d\n", res);

for(j=1; j<=N; j=j+1){

}

TClinear_search(nums1,j,7)=O(j)

for-j: TC1iter(___) = _________________________ dependent / independent

 Change of var: __

 / repetitions __

 Closed form: _______________________________ O(_______________)

 TC-notes Page 21

Intuition on sum of k and sum of 2k

Wednesday, January 26, 2022 12:17 AM

 TC-notes Page 22

