Time Complexity

CSE 3318

Alexandra Stefan

Overview

e Exact instruction count

* TC (Time complexity) :
* motivation,
* O() notation,
* meaning,
* calculation for case of a single variable

* TC for loops
o liter
* TC;r(loop_variable)
* table
e TC of nested loops

Exact instruction count is a sum of terms (often a polynomial)

void insertion sort(int A[],int N){
int j,k,curr;
for (j=1; j<N; j++){
curr = A[]]; //

k = j-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}
A[k+1] = curr; //

In the WORST case each instruction of the while loop
(e.g. A[k+1] = A[k]) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 =N(N-1)/2

Detailed instruction count for WORST case of insertion sort

Instruction Count Explanation
Jj=1; 1
j<N; N (N-1) true, 1 false
curr = A[]j]; N-1
k = j-1; N-1
(k>=0) N(N-1)/2
(A[k]>curr) N(N-1)/2
&& N(N-1)/2
Alk+1]=A[k]; | N(N-1)/2
k = k-1; N(N-1)/2
A[k+1l] = curr; N-1
J++ N-1

Total (sum of all
instructions)

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3

Exact instruction count is a sum

void insertion sort(int A[],int N){
int j,k,curr;
for (j=1; j<N; j++){

//

//

curr = A[Jj];
k = 3-1;
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}

A[k+l] = curr; //

of terms (often a polynomial)

Instruction Count Explanation
J=1; 1
j<N; N (N-1) true, 1 false
curr = A[]j]; N-1
k =3-1; N-1

(k>=0) N(N-1)/2

(A[k]>curr) N(N-1)/2

&& N(N-1)/2

A[k+1]=A[k]; | N(N-1)/2

k = k-1; N(N-1)/2
A[k+l] = curr; N-1
J++ N-1
Total (sum of all 1+N+4(N-1)+5*N(N-1)/2 =
instructions) (5/2)N2 + (5/2)N - 3

TC (time complexity)

* Algorithm performance for large data size (goes to infinity)

* Looks at dominant term in that expression

e focuses on N2
* instead of (5/2)N? + (5/2)N - 3

* Notation: O() (and a few other symbols)
* Motivation

Why use O(N?2) instead of 100N+3N2+1000

The table below will help understand why TC focuses on the dominant term instead of the exact instruction count.

Assume an exact instruction count for a program gives: 100N+3N2+1000
Assume we run this program on a machine that executes 10° instructions per second.

Compute the time for each term in the summation

(Review: Sample time calculation: 10000 instructions will take: 10000/10° = 10~ seconds)

Values in table are approximations (not exact calculations).

N N’ 3N’ 100N 1000

104 Insstructions: Instrgctions: InsGtructions: Insgtructions:
10 3*10 10 10 ;

(small) Time: 0.1sec Time: 0.3sec Time: 0.001sec Time: 10 sec

109 Instgrtzjctiolr;s: Instrugtzions: s Instructgions:11 Insgtructions:
(107) =10 3*(107) =3*10 100*10 = 10 10]

(large) Time: 31 yrs Time: 95 yrs Time: 100sec = 1.6 min Time: 10" sec

1018/10° = 10° sec = 10°/ (60sec*60min*24hrs*365days) = 10° / 31536000 = about 31yrs

You can also plot these functions, add or remove terms and see which terms determine the shape.

How to find the dominantterm O(?)
(case with only one variable)

1. Remove multiplication constants

* Aterm with no variable does NOT disappear. It becomes 1
« E.g.1000 -> 1 b.c. 1000 = 1000*1 = 1000*N° => the constant is 1000, the function is 1 (N°)

2. View each term as a separate function

3. Keep the function(s) that grow faster than the others
* more cases later when we look at expressions with 2 or more variables

4. Writeitin O)

Example: 100N + 3N2+ 1000 = O()

1. Remove mult constants: N+ N2+ 1 (note we still keep 1 for 1000)

2. Look at terms as fcts: N, N2, 1 (eg: f(N)=N, g(N)=N2, h(N)=1)
3. Keep the faster growing one: N2

4. Fillin O: O(N?)

Ordering functions by their growth

.'cl)\.

=2

;L//f Ordering functions by their growth

* Motivation:
e calculation of O
e comparing 2 algorithms

* Notation: /Ig(n) for log,(N)

;L//f Ordering functions by their growth -

To compare 2 functions:
* plot them (e.g. use this tool) or

* * use ratio: take their ratio, simplify, and compare the remaining functions.
e Preferred method

* You can computethe limit as N goes to infinity

Compare the functions in each pair using their ratio

NZ
a) N2 7N o
b) NN ? N Do
¢) NVN ? N2 NN2N=

lgN

d) IgN 7?7 log;N g N

https://www.desmos.com/calculator

£ ¢ Ordering functions by their growth - Solution

To compare 2 functions:
* plot them (e.g. use this tool) or

* * use ratio: take their ratio, simplify, and compare the remaining functions.
e Preferred method

* You can computethe limit as N goes to infinity

Compare the functions in each pair using their ratio

a) N? < N3 x—z = % use 1 grows slower than N or IEII_)IEIO% =0 = top grows slower
b) NVN > N $ = @ use VN grows faster than1 or Iel_)%\/—lﬁ = o = top grows faster
c) NVN < N? NA\I/ZN = % use 1 grows slower than+/N or Iel_)rﬁloiN =0 = top grows slower
d) IgN = log;N lolg;VN = ?;_1,3 = l‘glN * ;j; = lg3 uselg3 is a constant (no N) or I{Illg 1013;\]1\/ = lg3 = same growth

lg3

https://www.desmos.com/calculator

ia//f Ordering functions by their growth

Order in increasing order of growth the functions within each group.

a) polynomial: N, N2, N¥/2 N3, N1/3, NO1 NO-001

b) logarithmic: log;N, log,N, IgN, log,(N?)

* True / False : All log functions (that differ in only the base) have the same growth.

c) poly vs log: N, lgN, N2, No.001

* Select correct answer: Any log function grows slower / faster than a polynomial function

d) mix: N, N2, IgN, 50, NIgN, N3, N¥/2, log(N)

e) exponential: 3N, 2N 5N (1/2)N

f) mix with NI, NN : NI, N NN 100N, N3, 3N

High level (use “names”):

ia//f Ordering functions by their growth

Order in increasing order of growth the functions within each group.

a) polynomial: N, N2, N¥/2 N3, N1/3, NO-1 NO.001

b) logarithmic: logsN, log,N, IgN

True / False : All log functions (that differ in only the base) have the same growth rate.
True / False : log,(N) and log,(N?) have the same growth rate.

a) polyvslog: N, IgN, N1/2, [0-001

Select correct answer: Any log function grows slower / faster than a polynomial function

b) mix: N, N2, IgN, 50, NIigN, N3, N2, log.(N)

c) exponential: 3N, 2N 5N (1/2)N

d) mixwith NI, NN : NI, N0 NN _ 100N, N3, 3N

High level (use “names”):

ii\//f Ordering functions by their growth - Solution

Order in increasing order of growth the functions within each group.

a) polynomial: N, N? N1/2 N3, N1/3, NO-1 |NO.001 _ NO-001 O N1/3, N1/2 JN,N2, N3

b) logarithmic: log;N, log,N, IgN _ SAME growth _ (logsN, log;N, IgN) _
True / False : All log functions (that differ in only the base) have the same growth rate.

True / False : log,(N) and log,(N?) have the same growth rate.

a) poly vs log: N, IgN, N2, NOooO1 __lgN, N0001 'N1/2 N

Select correct answer: Any log function grows slower / faster than a polynomial function

b) mix: N, N2, IgN, 50, NigN, N3, N*/2 log:(N) _ 50, logs(N), IgN, N2, N, NIgN , N2, N3,

c) exponential: 3N, 2N 5N (1/2)N __(1/2)N, 2N 3N BN

d) mixwith NI, NN : NI, N0 NN 100N, N3,3N N3,N200 3N 700N, NI, NN

High level (use “names”): constant, logarithmic, polynomial, exponential , N! , NN

« 318N ? N2 “31eN grows slower than N?.” True / False

« 58N ? N2 “5l8N growsslower than N?.” True / False

|II

“False polynomia

ctdtN) = Ntg(c) for any constant c
« E.g. 718(N) = NIg8(™)
* Proof: applying Ig on both sides results in two equal terms:
]g(clg(N)) :]g(ng(C)) =>

1g(N) *Ig(c)= Ig(c) *Ig(N)
* This equality helps identify “false exponentials”.
E.g. 399WN) may look like an exponential growth but is really polynomial: N'9(3)

« 318N < NZ “31eN grows slower than N?.” True / Ealse
318N = Nlg3 = NIg,® < N? (b.c.log,3 < 2)

« 58N > N2 “5BN growsslower than N?.” True /Ealse
58N = Nlg> = Nlog,5) > N? (b.c.log,5 > 2)

;L//f Ordering functions by their growth

Order the functions below in increasing order of growth

Order: N, 500, 4N, IgN, NV, log,(N3), (2/3)N, NOOL NIgN, N3, N!, 1,58V N2

High level (use “names”) review:

Summations

Arithmetic with O()

e O(1)+O(1) +...0(1) added T timesis O(T) . Justification:
 Added a variable, T, number of times

* O(1) + O(1) + O(1) =0(1) . Justification:

* Added a fixed/constant number of times (3)

 O(T) + O(T) + O(T) + ... + O(T) added N times is O(NT) . Justification:
* N*O(T) = O(NT) or
e O(T+T+... +T) = O(NT)
* Keep the variable names provided. Do not use N instead of T or vice versa.

e WRONG to use N instead of T or vice versa.
* Wrong answers: O(N?), O(T?)

Time Complexity for loops

Loop execution and
liter (code executed in one loop iteration)

void exl () { // code execution: while-k and for-k
int A[7] = {5, 1, 9, 3, 5, 9, 5};)ﬂS/-

int N = 7; 1/4)7 ’t:_/ (04“)j (k 0(4
int T = 4; /!-0-4— (é 4 (4))

int ki beT (r24))
k=1 Vad (4
~> k =0; o ++ (L‘Z) 0
“ while(k‘<_T'){ k¢r (Z‘ l‘)
printf ("%4d, ", A[k]); é-z r e] ' 0({/
- b ++ Ll=3)
k++;
— R < T l‘aL‘i)
} k=3 rn D((/)
printf ("\n") ; L b+ (le= A)
27 (424) Zo.ﬂpp 1

ad o

// for(k = 0; k<T; k++){
// printf("%4d, ", A[k]):
//}

21

k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

}

Steps:

0.

1
2.
3

Fill out column for iter (r)

Fill in the loop variable name in the 2 blanks in table header

Fill out LV column

Write LV as a function of r .
1. Thisis not needed if k has the same values as r (or reversed).
2. If needed, use this function in last row to solve for r .

Compute TCy;,(loop_var)

1. identify code in 1 iter (iter = iteration)
2. computeits TC
3. fillin the blanks in TCy(___)=0(___) (top, rightmost cell)

Fill out the TC;,., column.
1. Careful if loop variable isin O()
2. May need to use the function from step 3

Compute the sum of all values in the rightmost column

Using a table to solve TC of loops

iter (r) | Loop_var (LV)

V=201 | TCyue() =
o __)

r-Iast = — - 4

TCioop=SUM O
(final answer for thj

values in rightmost\column

N

Last value of k for which the
loop condition evaluates true.

Use k.. , Nast and the formula for k
as a function of r to compute r,.

22

Ex 1 - Worksheet

k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

Code executed in 1 iteration of while-k loop:

(k<T) -> 0(1)
printf (one int) -> 0O(1)
k++ -> 0(1)

=> TCiiter (k) = O(1)+0(1)+0 (1) =

0 (1)

iter (r) Loop var (LV)

LV = ?(r) TCliter(.) =
o ___)

Mast = — /

Final answer ——

TCio0p = SUM ofall values in rightmost cplumn

~\

Last value of loop variable for
which the loop condition
evaluates true.

Use ki, , Nast and the formula for k
as a function of r to compute r ..

23

Ex 1 - Solution

k =0;
while (k<T) {
printf ("%$4d, ", A[k]):;

k++;

Code executed in 1 iteration of while-k loop:

(k<T) ->
O(1)
-> 0(1)

O(1)+0(1)+0(1) =

printf (one int)
k++
=> TCyjter (k) =

Loop variable is k

rd

A
iter (r) Loop var / LV = ?(r) TClierl k) =
k o(1)
0 0 1
1 1 1
2 2 1
r k k=r 1
Flast = (T'l) / T-1 (T'l)zklast= Flast 1
TCloop = SUM O lumn
O(1) =1+1+2+... +1
Final answer —————> = O(T)

Last value of k for which the loop
condition, (k<T) evaluates true.

Use ki, , Nast and the formula for k
as a function of r to compute r ..

24

Ex. 2

for(j = O; j<N; j++){
for(v=0; v<T; v++) {
printf(A[v])

}

Analyzed fOI"(V) -> O(T) (same as prev page)

Analyze for |
liter(j)

25

Ex. 2 - Solution

for(j = O; j<N; j++){
for(v=0; v<T; v++) {
printf(A[v])

}

Analyzed fOI"(V) -> O(T) (same as prev page)

Analyze for |
liter(j)

26

Ex. 3

for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(_) (prev page)
Analyze for |
liter(j)

27

Ex. 3 - Solution

for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(_) (prev page)
Analyze for |
liter(j)

28

Ex. 4

for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])

liter(j)

29

Ex. 4 - Solution

for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])
}

liter(j)

30

Ex. 4 (review from last lecture)

for(t=1,; t< N ;

t =

t*3) {

for(v=2C; v>=1; v—-) {

printf (A[v])

Loop variable

= ?(r)

TCliter(
o(__)

)=

WIN|[F-=]O

}
}
r Loop variable =?(r) TCliter(__) =
o(__)
0
1
2
3
r
Mlast™
TCIoop=

r-Iast=

TCIoop=

31

What is the TC for each of these code pieces?
Use TC;,.. = O(j) and TC;,,, = O(pval)

for(j

}

=1; j<=N;
for(t = 0; t < j; t++) {

printf ("A") ;

J *=2){

for(pval=l, k=1 ; k<=N ;
for(v=0; v < pval; v++) {

printf ("A") ;
}
// pval *= 2;

k++, pval*=2) {

Loop variable

=2(r)

Tcliter(_) = O(_)

r Loop variable

=2(r)

TCliter(_) = O(—)

W IN|[F-=]O

W I IN|[F-—=]|O

r-Iast=

rIast=

TCIoop=

TCIoop

32

Geometric series

general term last term
Sy = Ypo@)=1+a+ a*+ a®+a*+ ..+ a"+ ..+ a? =
_aPtl-1 ag«aP-1 _ axlastTerm-—1
a—1 a—1 a—1
e Solve:
e 1+5+25+125+...+5k+ . +56= (number of terms:

(number of terms:
(number of terms:
(number of terms:
(number of terms:

e 1+3+9+27+...+3k+ ... +3°
1+2+4+8+..+2k+ .. +210
1+2+4+8+..+2k+..+1024
1+3+9+27+..+3k+...+729

S N e N e

 Pay attention to the form in which the last term in the summation is given: 20, or 1024.
* Do you know the exponent, p, for the last term, or do you know the value, v, of the term ?

* IfaP = vthen p =log,(v).

Geometric series

S, =Y (@) =1+a+ a*+ a®+a*+ ..+ ad'+ ..+ aP =

aPt1l-1 axaP—1 axlastTerm — 1

a a—1 a—1 a—1

 Two programs, A, and B, process an array of size N. Fill in the answers in O() for each.
« TCof program Ais: 1+21+22+23+24+2°+ .+2k+. +2N=0Q()
e TCof programBis: 1+21+22+23+2%+25+ ... +2k+ ..+ N= O)

Geometric series

S,= Y (@) =1+a+ a®+ a®+a*+ ..+ a+ ..+ aP =

aPt1l-1 axaP—1 axlastTerm — 1

a a—1 a—1 a—1

 Two programs, A, and B, process an array of size N. Fill in the answers in O() for each.
e TCof program Ais: 1+21+22+23+24+2°+ ..+2k+. +2N=(2N11) /(2-1) = 2N+1-1 = O(2N)
« TCof programBis: 1+21+22+23+2%+25+...+2X+ ...+ N=2N-1= O(N)

e Eg.ifN==64:
o Ar 1+2V 422423424+ 25+ 26+ . 42K+ . +2634264=(265-1)/(2-1) = 255-1
* B: 1+2+4+8+16+32+64=1+21+22+23+2%4+2°+20=2%64-1=128-1=127
* Note that 2° =64

TC of functions

e TC of function definition
e TC of function call

Time complexity of function definition

// Assumes array nums has at least T elements.
// Calculate the TC for the count
int count(int nums[], int T, int V)
{

int count =

for(int k=0; k<T; k++) {

if (nums[k] = V)
count++;

}

return count;

}
TCliter(k) = O(1)+0(1) + O(1) +0(1) = O(1)

r

Loop variable

= ?(r)

TCliter(_) =

o(__)

Wi IN|EF-—=]|O

rIast=

TCIoop

37

Time complexity of
function definition vs function call

// Write the TC for each function call below
/* Assume all variables exist and have good
values */
// Assume this function has TC O(T)
int count(int nums[], int T, int V) // O(T) count (nums, N, val); // O)
count (nums, X, N); // O)
count (nums, N+M, val); // O)
count (nums, N*N, val); // O()
count (nums, , val); // O()
count(arr, X, N); // O)

38

Time complexity of
function definition vs function call

// Write the TC for each function call below
/* Assume all variables exist and have good
values */

// Assume this function has TC O(T)
int count(int nums[], int T, int V) // O(T)

count(nums, N, wval); // O(__ N)

count (nums, X, N); // O(__ X __)
count (nums, N+M, val); // O(_ N + M)
count (nums, N*N, val); // O(__ N2)

count (nums, , val); // o(_ 1)

count(arr, X, N); // O(__ X)

39

Time Complexity for Function Definitions

TC for a function DEFINITION can ONLY depend on the data
passed as argument. We assume no global or external variables.

E.g. for

int count(int nums[], int T, int V) {

}

In the O() for the TC expression we can only have:

e variable names that are parameters
 E.g. O(T+V)is ok because both T and V are parameters.
 E.g. O(N)is wrong because thereis no N in the list of parameters

* variables that represent a number (typically integer)
* E.g.size of the array, size of a data record, max value in an array

* |tis wrong to say O(nums?) because nums is an entire array. What
is nums??

* Remember that TC in the end should give a quantity.

* “new” variables

* names that are not among the function parameters, but we have
clearly defined with respect to the input data.

 E.g. “O(N) where N is the number of elements in nums”.

Here N is not a parameter of count, but | have defined what N
represents with respectto nums, and N is an integer.

40

Time Complexity for Function Calls

The TC for a function CALL is based on
* the time complexity of the function definition and

* the arguments passed in that call
Sample problem:
The line below indicates that the function search has TC O(S?).

int search(int nums[], int S, int V); // O(S?)

Fill in the TC of each line of code below:

r=search (nums, M, 7); // O(___)
r=search (nums, d, S); // O(___)
r=search (nums, T+X, 7); // O(__)

r=search (nums, 39,7); //O(___)

Practice problems - Interesting cases

of the function definition below?

What 1s the time complexity (TC)
int count_char (char * text) {
int count = 0O;
for (int k=0; k<strlen (text); k++) {
if (text[k] == "A'){
count++;

}

return count;

43

What 1s the time complexity (TC) of the function definition below?

void print ct sheep (int X, char * animal) {
printf ("X=%d, N=%d\n", X, N);
for (int k=0; k<X; k++) {
printf ("%3d %s\n", k, animal);

}

printf ("\n");

44

What 1s the time complexity

(TC)

of the function below?

int count char (char * text) {
int count = 0;
int N = strlen(text);
for(int k=0,; k<N; k++) {
if (text[k] == "A'){

count += strlen (text) ,

}

return count;

45

Math review

Review log and exponent and
closed form (solutions) for common summations

aP =N = p = log, N (Proof:apply log, on both sides: log,(a?) = log, N = p =log, N)

Other useful equalities with log: alogaN = N, log,(a?) =p
alogb N _ Nlogb a

logp N
logp a

The closedform is the solution for the summation. It is an expression that is equivalent to the
summation, but does NOT have any), init.

log, N = (Change of log basis)

We need the c]osec{v form in order to find O for that summation.

N(N + 1) ,
Zk=1+2+3+4+~--+(N—1)+N= 5 =0(N?)
N k=1
N(N +1)(2N + 1
Zk2=1+22+32+42+---++N2: ()6()=0(N3)
kil

N+1

= 0(a") when a > 1;
a—1

a
za"=1+a+a2+a3+a4+---+a’v=

k=0

Review

Techniques for solving summations (useful for O or dominant term calculations)

Note that some of these will NOT compute the EXACT solution for the summation

Terminology: summation term, summation variable. Eg. inY¥_, kS , (kS)-summation term, k -summation variable
Independent case (term in summation does not have the variable of the summation).

N
S=S+S+S+-.+S=NS (zSleSN)
k=1

Pull constant in front of summation: ¥N_;(Sk) = 1S + 25 +35 ..+ NS = S¥I_ k = ST = 0(SN?)

Break summatlon in two summatlons
N N+1) NIN+1)(2ZN+1
Z(kS+k2)—sz+Zk2—SZk+Zk2 () M 25() _ 0(SN? + N?)
Drop lower order term from Summatlon term.E.g.10k is lower order compared to k?:

NV +1)@N +1) _
2(10k+k2) —Zkz x 0(N?)

Use approximation by integrals for increasing or decreasing f(k) — REMOVED (not required)
N
z f(k) = 0(F(N) — F(S)) (where F is the antiderivative of f)
S

	Default Section
	Slide 1: Time Complexity
	Slide 2: Overview
	Slide 3: Exact instruction count is a sum of terms (often a polynomial)
	Slide 4: Exact instruction count is a sum of terms (often a polynomial)
	Slide 5: TC (time complexity)
	Slide 6: Why use O(N2) instead of 100N+3N2+1000
	Slide 7: How to find the dominant term O(__?__) (case with only one variable)
	Slide 8: Ordering functions by their growth
	Slide 9: Ordering functions by their growth
	Slide 10
	Slide 11
	Slide 12: Ordering functions by their growth
	Slide 13: Ordering functions by their growth
	Slide 14: Ordering functions by their growth - Solution
	Slide 15
	Slide 16: “False polynomial”
	Slide 17: Ordering functions by their growth
	Slide 18: Summations
	Slide 19: Arithmetic with O()

	TC for loops
	Slide 20: Time Complexity for loops
	Slide 21: Loop execution and 1iter (code executed in one loop iteration)
	Slide 22: Using a table to solve TC of loops
	Slide 23: Ex 1 - Worksheet
	Slide 24: Ex 1 - Solution
	Slide 25: Ex. 2
	Slide 26: Ex. 2 - Solution
	Slide 27: Ex. 3
	Slide 28: Ex. 3 - Solution
	Slide 29: Ex. 4
	Slide 30: Ex. 4 - Solution
	Slide 31: Ex. 4 (review from last lecture)
	Slide 32: What is the TC for each of these code pieces? Use TCfor-t = O(j) and TCfor-v = O(pval)
	Slide 33: Geometric series
	Slide 34: Geometric series
	Slide 35: Geometric series

	TC of function calls and function definition
	Slide 36: TC of functions
	Slide 37: Time complexity of function definition
	Slide 38: Time complexity of function definition vs function call
	Slide 39: Time complexity of function definition vs function call
	Slide 40: Time Complexity for Function Definitions
	Slide 41: Time Complexity for Function Calls

	Practice - Interesting
	Slide 42: Practice problems - Interesting cases
	Slide 43: What is the time complexity (TC) of the function definition below?
	Slide 44: What is the time complexity (TC) of the function definition below?
	Slide 45: What is the time complexity (TC) of the function below?

	Matth Review
	Slide 46: Math review
	Slide 47
	Slide 48: Techniques for solving summations (useful for O or dominant term calculations) Note that some of these will NOT compute the EXACT solution for the summation

