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Overview

e Exact instruction count

* TC (Time complexity) :
* motivation,
* O() notation,
* meaning,
* calculation for case of a single variable

* TC for loops
o liter
* TC;r(loop_variable)
* table
e TC of nested loops



Exact instruction count is a sum of terms (often a polynomial)

void insertion sort(int A[],int N){
int j,k,curr;
for (j=1; j<N; j++){
curr = A[]]; //

k = j-1; //
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}
A[k+1] = curr; //

In the WORST case each instruction of the while loop
(e.g. A[k+1] = A[k] ) executes:

1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N )/2 =N(N-1)/2

Detailed instruction count for WORST case of insertion sort

Instruction Count Explanation
Jj=1; 1
j<N; N (N-1) true, 1 false
curr = A[]j]; N-1
k = j-1; N-1
(k>=0) N(N-1)/2
(A[k]>curr) N(N-1)/2
&& N(N-1)/2
Alk+1]=A[k]; | N(N-1)/2
k = k-1; N(N-1)/2
A[k+1l] = curr; N-1
J++ N-1

Total (sum of all
instructions )

1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N2 + (5/2)N - 3




Exact instruction count is a sum

void insertion sort(int A[],int N){
int j,k,curr;
for (j=1; j<N; j++){

//

//

curr = A[Jj];
k = 3-1;
while ((k>=0) && (A[k]>curr)) {
A[k+1] = A[k];
k = k-1;
}

A[k+l] = curr; //

of terms (often a polynomial)

Instruction Count Explanation
J=1; 1
j<N; N (N-1) true, 1 false
curr = A[]j]; N-1
k =3-1; N-1

(k>=0) N(N-1)/2

(A[k]>curr) N(N-1)/2

&& N(N-1)/2

A[k+1]=A[k]; | N(N-1)/2

k = k-1; N(N-1)/2
A[k+l] = curr; N-1
J++ N-1
Total (sum of all 1+N+4(N-1)+5*N(N-1)/2 =
instructions ) (5/2)N2 + (5/2)N - 3




TC (time complexity)

* Algorithm performance for large data size (goes to infinity)

* Looks at dominant term in that expression

e focuses on N2
* instead of (5/2)N? + (5/2)N - 3

* Notation: O() (and a few other symbols)
* Motivation



Why use O(N?2) instead of 100N+3N2+1000

The table below will help understand why TC focuses on the dominant term instead of the exact instruction count.

Assume an exact instruction count for a program gives: 100N+3N2+1000
Assume we run this program on a machine that executes 10° instructions per second.

Compute the time for each term in the summation

(Review: Sample time calculation: 10000 instructions will take: 10000/10° = 10~ seconds )

Values in table are approximations (not exact calculations).

N N’ 3N’ 100N 1000

104 Insstructions: Instrgctions: InsGtructions: Insgtructions:
10 3*10 10 10 ;

(small) Time: 0.1sec Time: 0.3sec Time: 0.001sec Time: 10 sec

109 Instgrtzjctiolr;s: Instrugtzions: s Instructgions:11 Insgtructions:
(107) =10 3*(107) =3*10 100*10 = 10 10 ]

(large) Time: 31 yrs Time: 95 yrs Time: 100sec = 1.6 min Time: 10" sec

1018/10° = 10° sec = 10°/ (60sec*60min*24hrs*365days) = 10° / 31536000 = about 31yrs

You can also plot these functions, add or remove terms and see which terms determine the shape.



How to find the dominantterm O( ? )
(case with only one variable)

1. Remove multiplication constants

* Aterm with no variable does NOT disappear. It becomes 1
« E.g.1000 -> 1 b.c. 1000 = 1000*1 = 1000*N° => the constant is 1000, the function is 1 (N°)

2. View each term as a separate function

3. Keep the function(s) that grow faster than the others
* more cases later when we look at expressions with 2 or more variables

4. Writeitin O )

Example: 100N + 3N2+ 1000 = O( )

1. Remove mult constants: N+ N2+ 1 (note we still keep 1 for 1000)

2. Look at terms as fcts: N, N2, 1 (eg: f(N)=N, g(N)=N2, h(N)=1)
3. Keep the faster growing one: N2

4. Fillin O: O(N?)



Ordering functions by their growth

.'cl)\.

=2



;L//f Ordering functions by their growth

* Motivation:
e calculation of O
e comparing 2 algorithms

* Notation: /Ig(n) for log,(N)



;L//f Ordering functions by their growth -

To compare 2 functions:
* plot them (e.g. use this tool ) or

* * use ratio: take their ratio, simplify, and compare the remaining functions.
e Preferred method

* You can computethe limit as N goes to infinity

Compare the functions in each pair using their ratio

NZ
a) N2 7N o
b) NN ? N Do
¢) NVN ? N2 NN2N=

lgN

d) IgN 7?7 log;N g N



https://www.desmos.com/calculator

£ ¢ Ordering functions by their growth - Solution

To compare 2 functions:
* plot them (e.g. use this tool ) or

* * use ratio: take their ratio, simplify, and compare the remaining functions.
e Preferred method

* You can computethe limit as N goes to infinity

Compare the functions in each pair using their ratio

a) N? < N3 x—z = % use 1 grows slower than N  or IEII_)IEIO% =0 = top grows slower
b) NVN > N $ = @ use VN grows faster than1 or Iel_)%\/—lﬁ = o = top grows faster
c) NVN < N? NA\I/ZN = % use 1 grows slower than+/N or Iel_)rﬁloiN =0 = top grows slower
d) IgN = log;N lolg;VN = ?;_1,3 = l‘glN * ;j; = lg3 uselg3 is a constant (no N) or I{Illg 1013;\]1\/ = lg3 = same growth

lg3


https://www.desmos.com/calculator

ia//f Ordering functions by their growth

Order in increasing order of growth the functions within each group.

a) polynomial: N, N2, N¥/2 N3, N1/3, NO1 NO-001

b) logarithmic: log;N, log,N, IgN, log,(N?)

* True / False : All log functions (that differ in only the base) have the same growth.

c) poly vs log: N, lgN, N2, No.001

* Select correct answer: Any log function grows slower / faster than a polynomial function

d) mix: N, N2, IgN, 50, NIgN, N3, N¥/2, log(N)

e) exponential: 3N, 2N 5N (1/2)N

f)  mix with NI, NN : NI, N NN 100N, N3, 3N

High level (use “names”):




ia//f Ordering functions by their growth

Order in increasing order of growth the functions within each group.

a) polynomial: N, N2, N¥/2 N3, N1/3, NO-1 NO.001

b) logarithmic: logsN, log,N, IgN

True / False : All log functions (that differ in only the base) have the same growth rate.
True / False : log,(N) and log,(N?) have the same growth rate.

a) polyvslog: N, IgN, N1/2, [ 0-001

Select correct answer: Any log function grows slower / faster than a polynomial function

b) mix: N, N2, IgN, 50, NIigN, N3, N2, log.(N)

c) exponential: 3N, 2N 5N (1/2)N

d) mixwith NI, NN : NI, N0 NN _ 100N, N3, 3N

High level (use “names”):




ii\//f Ordering functions by their growth - Solution

Order in increasing order of growth the functions within each group.

a) polynomial: N, N? N1/2 N3, N1/3, NO-1  |NO.001 _ NO-001 O N1/3, N1/2 JN,N2, N3

b) logarithmic: log;N, log,N, IgN _ SAME growth _ (logsN, log;N, IgN) _
True / False : All log functions (that differ in only the base) have the same growth rate.

True / False : log,(N) and log,(N?) have the same growth rate.

a) poly vs log: N, IgN, N2, NOooO1 __lgN, N0001 'N1/2 N

Select correct answer: Any log function grows slower / faster than a polynomial function

b) mix: N, N2, IgN, 50, NigN, N3, N*/2 log:(N) _ 50, logs(N), IgN, N2, N, NIgN , N2, N3,

c) exponential: 3N, 2N 5N (1/2)N __(1/2)N, 2N 3N BN

d) mixwith NI, NN : NI, N0 NN 100N, N3,3N  N3,N200 3N 700N, NI, NN

High level (use “names”): constant, logarithmic, polynomial, exponential , N! , NN



« 318N ? N2 “31eN grows slower than N?.” True / False

« 58N ? N2  “5l8N growsslower than N?.” True / False



|II

“False polynomia

ctdtN) = Ntg(c) for any constant c
« E.g. 718(N) = NIg8(™)
* Proof: applying Ig on both sides results in two equal terms:
]g(clg(N)) :]g(ng(C)) =>

1g(N) *Ig(c)= Ig(c) *Ig(N)
* This equality helps identify “false exponentials”.
E.g. 399WN) may look like an exponential growth but is really polynomial: N'9(3)

« 318N < NZ “31eN grows slower than N?.” True / Ealse
318N = Nlg3 = NIg,® < N? (b.c.log,3 < 2)

« 58N > N2  “5BN growsslower than N?.” True /Ealse
58N = Nlg> = Nlog,5) > N? (b.c.log,5 > 2)



;L//f Ordering functions by their growth

Order the functions below in increasing order of growth

Order: N, 500, 4N, IgN, NV, log,(N3), (2/3)N, NOOL NIgN, N3, N!, 1,58V N2

High level (use “names”) review:




Summations



Arithmetic with O()

e O(1)+O(1) +...0(1) added T timesis O(T) . Justification:
 Added a variable, T, number of times

* O(1) + O(1) + O(1) =0(1) . Justification:

* Added a fixed/constant number of times (3)

 O(T) + O(T) + O(T) + ... + O(T) added N times is O(NT) . Justification:
* N*O(T) = O(NT) or
e O(T+T+... +T) = O(NT)
* Keep the variable names provided. Do not use N instead of T or vice versa.

e WRONG to use N instead of T or vice versa.
* Wrong answers: O(N?), O(T?)



Time Complexity for loops



Loop execution and
liter (code executed in one loop iteration)

void exl () { // code execution: while-k and for-k
int A[7] = {5, 1, 9, 3, 5, 9, 5}; )ﬂS/-

int N = 7; 1/4)7 ’t:_/ (04“)j (k 0(4
int T = 4; /!-0-4— (é 4 (4))

int ki beT (r24) )
k=1 Vad (4
~> k =0; o ++ (L‘Z) 0
“ while(k‘<_T'){ k¢r (Z‘ l‘)
printf ("%4d, ", A[k]); é-z r e ] ' 0( {/
- b ++ Ll=3)
k++;
— R < T l‘aL‘i)
} k=3 rn D((/)
printf ("\n") ; L b+ (le= A)
27 (424) Zo.ﬂpp 1

ad o

// for( k = 0; k<T; k++){
// printf("%4d, ", A[k]):
//}

21



k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

}

Steps:

0.

1
2.
3

Fill out column for iter ( r)

Fill in the loop variable name in the 2 blanks in table header

Fill out LV column

Write LV as a function of r .
1. Thisis not needed if k has the same values as r (or reversed).
2. If needed, use this function in last row to solve for r .

Compute TCy;,( loop_var )

1. identify code in 1 iter (iter = iteration)
2. computeits TC
3. fillin the blanks in TCy(___)=0( ___ ) (top, rightmost cell)

Fill out the TC;,., column.
1. Careful if loop variable isin O( )
2.  May need to use the function from step 3

Compute the sum of all values in the rightmost column

Using a table to solve TC of loops

iter (r) | Loop_var (LV)

V=201 | TCyue() =
o __ )

r-Iast = — - 4

TCioop=SUM O
(final answer for thj

values in rightmost\column

N

Last value of k for which the
loop condition evaluates true.

Use k.. , Nast and the formula for k
as a function of r to compute r,.

22




Ex 1 - Worksheet

k =0;

while (k<T) {
printf("%4d, ", A[k]);
k++;

Code executed in 1 iteration of while-k loop:

(k<T) -> 0(1)
printf (one int) -> 0O(1)
k++ -> 0(1)

=> TCiiter (k) = O(1)+0(1)+0 (1) =

0 (1)

iter (r) Loop var (LV)

LV = ?(r) TCliter( . ) =
o ___ )

Mast = — /

Final answer ——

TCio0p = SUM ofall values in rightmost cplumn

~\

Last value of loop variable for
which the loop condition
evaluates true.

Use ki, , Nast and the formula for k
as a function of r to compute r ..

23




Ex 1 - Solution

k =0;
while (k<T) {
printf ("%$4d, ", A[k]):;

k++;

Code executed in 1 iteration of while-k loop:

(k<T) ->
O(1)
-> 0(1)

O(1)+0(1)+0(1) =

printf (one int)
k++
=> TCyjter (k) =

Loop variable is k

rd

A
iter (r) Loop var / LV = ?(r) TClierl k) =
k o( 1)
0 0 1
1 1 1
2 2 1
r k k=r 1
Flast = (T'l) / T-1 (T'l)zklast= Flast 1
TCloop = SUM O lumn
O(1) =1+1+2+... +1
Final answer —————> = O(T)

Last value of k for which the loop
condition, (k<T) evaluates true.

Use ki, , Nast and the formula for k
as a function of r to compute r ..

24




Ex. 2

for(j = O; j<N; j++){
for(v=0; v<T; v++) {
printf(A[v])

}

Analyzed fOI"(V) -> O(T) (same as prev page)

Analyze for |
liter(j)

25



Ex. 2 - Solution

for(j = O; j<N; j++){
for(v=0; v<T; v++) {
printf(A[v])

}

Analyzed fOI"(V) -> O(T) (same as prev page)

Analyze for |
liter(j)

26



Ex. 3

for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(_) (prev page)
Analyze for |
liter(j)

27



Ex. 3 - Solution

for(j = 0; j<N; j++){
for(v = 0; v<j; v++) {
printf(A[v])

}

Analyzed for-v -> O(_) (prev page)
Analyze for |
liter(j)

28



Ex. 4

for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])

liter(j)

29



Ex. 4 - Solution

for(t=1;t<N; t=t*3){
for(v=C; v>=1; v--) {
printf(A[v])
}

liter(j)

30



Ex. 4 (review from last lecture)

for( t=1,; t< N ;

t =

t*3) {

for(v=2C; v>=1; v—- ) {

printf (A[v])

Loop variable

= ?(r)

TCliter(
o(__)

)=

WIN|[F-=]O

}
}
r Loop variable =?(r) TCliter(__) =
o(__)
0
1
2
3
r
Mlast™
TCIoop=

r-Iast=

TCIoop=

31



What is the TC for each of these code pieces?
Use TC;,.. = O(j) and TC;,,, = O(pval)

for( j

}

=1; j<=N;
for( t = 0; t < j; t++ ) {

printf ("A") ;

J *=2){

for( pval=l, k=1 ; k<=N ;
for( v=0; v < pval; v++ ) {

printf ("A") ;
}
// pval *= 2;

k++, pval*=2) {

Loop variable

=2(r)

Tcliter(_) = O(_)

r Loop variable

=2(r)

TCliter(_) = O(—)

W IN|[F-=]O

W I IN|[F-—=]|O

r-Iast=

rIast=

TCIoop=

TCIoop

32



Geometric series

general term last term
Sy = Ypo@)=1+a+ a*+ a®+a*+ ..+ a"+ ..+ a? =
_aPtl-1 ag«aP-1 _ axlastTerm-—1
a—1 a—1 a—1
e Solve:
e 1+5+25+125+...+5k+ . +56= (number of terms:

(number of terms:
(number of terms:
(number of terms:
(number of terms:

e 1+3+9+27+...+3k+ ... +3°
1+2+4+8+..+2k+ .. +210
1+2+4+8+..+2k+..+1024
1+3+9+27+..+3k+...+729

S N e N e

 Pay attention to the form in which the last term in the summation is given: 20, or 1024.
* Do you know the exponent, p, for the last term, or do you know the value, v, of the term ?

* IfaP = vthen p =log,(v).



Geometric series

S, =Y (@) =1+a+ a*+ a®+a*+ ..+ ad'+ ..+ aP =

aPt1l-1 axaP—1 axlastTerm — 1

a a—1 a—1 a—1

 Two programs, A, and B, process an array of size N. Fill in the answers in O() for each.
« TCof program Ais: 1+21+22+23+24+2°+ .+2k+. +2N=0Q( )
e TCof programBis: 1+21+22+23+2%+25+ ... +2k+ ..+ N= O )




Geometric series

S,= Y (@) =1+a+ a®+ a®+a*+ ..+ a+ ..+ aP =

aPt1l-1 axaP—1 axlastTerm — 1

a a—1 a—1 a—1

 Two programs, A, and B, process an array of size N. Fill in the answers in O() for each.
e TCof program Ais: 1+21+22+23+24+2°+ ..+2k+. +2N=(2N11) /(2-1) = 2N+1-1 = O(2N)
« TCof programBis: 1+21+22+23+2%+25+...+2X+ ...+ N=2N-1= O(N)

e Eg.ifN==64:
o Ar 1+2V 422423424+ 25+ 26+ . 42K+ . +2634264=(265-1)/(2-1) = 255-1
* B: 1+2+4+8+16+32+64=1+21+22+23+2%4+2°+20=2%64-1=128-1=127
* Note that 2° =64



TC of functions

e TC of function definition
e TC of function call



Time complexity of function definition

// Assumes array nums has at least T elements.
// Calculate the TC for the count
int count(int nums[], int T, int V)
{

int count =

for(int k=0; k<T; k++) {

if ( nums[k] = V)
count++;

}

return count;

}
TCliter(k) = O(1)+0(1) + O(1) +0(1) = O(1)

r

Loop variable

= ?(r)

TCliter(_) =

o(__)

Wi IN|EF-—=]|O

rIast=

TCIoop
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Time complexity of
function definition vs function call

// Write the TC for each function call below
/* Assume all variables exist and have good
values */
// Assume this function has TC O(T)
int count(int nums[], int T, int V) // O(T) count (nums, N, val); // O )
count (nums, X, N); // O )
count (nums, N+M, val); // O )
count (nums, N*N, val); // O( )
count (nums, , val); // O( )
count(arr, X, N); // O )
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Time complexity of
function definition vs function call

// Write the TC for each function call below
/* Assume all variables exist and have good
values */

// Assume this function has TC O(T)
int count(int nums[], int T, int V) // O(T)

count(nums, N, wval); // O(__ N )

count (nums, X, N); // O(__ X __ )
count (nums, N+M, val); // O(_ N + M )
count (nums, N*N, val); // O(__ N2 )

count (nums, , val); // o(_ 1 )

count(arr, X, N); // O(__ X )

39



Time Complexity for Function Definitions

TC for a function DEFINITION can ONLY depend on the data
passed as argument. We assume no global or external variables.

E.g. for

int count(int nums[], int T, int V) {

}

In the O() for the TC expression we can only have:

e variable names that are parameters
 E.g. O(T+V)is ok because both T and V are parameters.
 E.g. O(N)is wrong because thereis no N in the list of parameters

* variables that represent a number (typically integer)
* E.g.size of the array, size of a data record, max value in an array

* |tis wrong to say O(nums?) because nums is an entire array. What
is nums??

* Remember that TC in the end should give a quantity.

* “new” variables

* names that are not among the function parameters, but we have
clearly defined with respect to the input data.

 E.g. “O(N) where N is the number of elements in nums”.

Here N is not a parameter of count, but | have defined what N
represents with respectto nums, and N is an integer.

40



Time Complexity for Function Calls

The TC for a function CALL is based on
* the time complexity of the function definition and

* the arguments passed in that call
Sample problem:
The line below indicates that the function search has TC O(S?).

int search(int nums[], int S, int V); // O(S?)

Fill in the TC of each line of code below:

r=search (nums, M, 7); // O(___ )
r=search (nums, d, S); // O(___)
r=search (nums, T+X, 7); // O(__ )

r=search (nums, 39,7); //O(___ )



Practice problems - Interesting cases



of the function definition below?

What 1s the time complexity (TC)
int count_char (char * text) {
int count = 0O;
for (int k=0; k<strlen (text); k++) {
if ( text[k] == "A' ){
count++;

}

return count;

43



What 1s the time complexity (TC) of the function definition below?

void print ct sheep (int X, char * animal) {
printf ("X=%d, N=%d\n", X, N);
for (int k=0; k<X; k++) {
printf ("%3d %s\n", k, animal);

}

printf ("\n");

44




What 1s the time complexity

(TC)

of the function below?

int count char (char * text) {
int count = 0;
int N = strlen(text);
for(int k=0,; k<N; k++) {
if ( text[k] == "A' ){

count += strlen (text) ,

}

return count;
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Math review



Review log and exponent and
closed form (solutions) for common summations

aP =N = p = log, N (Proof:apply log, on both sides: log,(a?) = log, N = p =log, N)

Other useful equalities with log: alogaN = N, log,(a?) =p
alogb N _ Nlogb a

logp N
logp a

The closedform is the solution for the summation. It is an expression that is equivalent to the
summation, but does NOT have any ), init.

log, N = (Change of log basis)

We need the c]osec{v form in order to find O for that summation.

N(N + 1) ,
Zk=1+2+3+4+~--+(N—1)+N= 5 =0(N?)
N k=1
N(N +1)(2N + 1
Zk2=1+22+32+42+---++N2: ( )6( )=0(N3)
kil

N+1

= 0(a") when a > 1;
a—1

a
za"=1+a+a2+a3+a4+---+a’v=

k=0



Review

Techniques for solving summations (useful for O or dominant term calculations)

Note that some of these will NOT compute the EXACT solution for the summation

Terminology: summation term, summation variable. Eg. inY¥_, kS , (kS)-summation term, k -summation variable
Independent case (term in summation does not have the variable of the summation ).

N
S=S+S+S+-.+S=NS (zSleSN)
k=1

Pull constant in front of summation: ¥N_;(Sk) = 1S + 25 +35 ..+ NS = S¥I_ k = ST = 0(SN?)

Break summatlon in two summatlons
N N+1) NIN+1)(2ZN+1
Z(kS+k2)—sz+Zk2—SZk+Zk2 ( ) M 25( ) _ 0(SN? + N?)
Drop lower order term from Summatlon term.E.g.10k is lower order compared to k?:

NV +1)@N +1) _
2(10k+k2) —Zkz x 0(N?)

Use approximation by integrals for increasing or decreasing f(k) — REMOVED (not required)
N
z f(k) = 0(F(N) — F(S)) (where F is the antiderivative of f)
S
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