Time Complexity CSE 3318 Alexandra Stefan #### Overview - Exact instruction count - TC (Time complexity): - motivation, - O() notation, - meaning, - calculation for case of a single variable - TC for loops - 1iter - TC_{1iter}(loop_variable) - table - TC of nested loops # Exact instruction count is a sum of terms (often a polynomial) In the WORST case each instruction of the while loop (e.g. A[k+1] = A[k]) executes: $$1+2+3+4+..+(N-2)+(N-1) = ((N-1)*N)/2 = N(N-1)/2$$ #### Detailed instruction count for WORST case of insertion sort | Instruction | Count | Explanation | |---|---|---------------------| | j=1; | 1 | | | j <n;< td=""><td>N</td><td>(N-1) true, 1 false</td></n;<> | N | (N-1) true, 1 false | | curr = A[j]; | N-1 | | | k = j-1; | N-1 | | | (k>=0) | N(N-1)/2 | | | (A[k]>curr) | N(N-1)/2 | | | && | N(N-1)/2 | | | A[k+1]=A[k]; | N(N-1)/2 | | | k = k-1; | N(N-1)/2 | | | A[k+1] = curr; | N-1 | | | j++ | N-1 | | | Total (sum of all instructions) | 1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N ² + (5/2)N - 3 | | ### Exact instruction count is a sum of terms (often a polynomial) | Instruction | Count | Explanation | |---|---|---------------------| | j=1; | 1 | | | j <n;< td=""><td>N</td><td>(N-1) true, 1 false</td></n;<> | N | (N-1) true, 1 false | | <pre>curr = A[j];</pre> | N-1 | | | k = j-1; | N-1 | | | (k>=0) | N(N-1)/2 | | | (A[k]>curr) | N(N-1)/2 | | | && | N(N-1)/2 | | | A[k+1]=A[k]; | N(N-1)/2 | | | k = k-1; | N(N-1)/2 | | | A[k+1] = curr; | N-1 | | | j++ | N-1 | | | Total (sum of all instructions) | 1+N+4(N-1)+5*N(N-1)/2 =
(5/2)N ² + (5/2)N - 3 | | # TC (time complexity) - Algorithm performance for large data size (goes to infinity) - Looks at dominant term in that expression - focuses on N² - instead of $(5/2)N^2 + (5/2)N 3$ - Notation: O() (and a few other symbols) - Motivation # Why use $O(N^2)$ instead of $100N+3N^2+1000$ The table below will help understand why TC focuses on the dominant term instead of the exact instruction count. Assume an exact instruction count for a program gives: 100N+3N²+1000 Assume we run this program on a *machine that executes* 10° instructions per second. Compute the time for each term in the summation (Review: Sample time calculation: 10000 instructions will take: $10000/10^9 = 10^{-5}$ seconds) Values in table are approximations (not exact calculations). | N | N ² | 3N ² | 100N | 1000 | |-------------------------|---|---|--|---| | 10 ⁴ (small) | Instructions:
10 ⁸
Time: 0.1sec | Instructions: 3*10 ⁸ Time: 0.3sec | Instructions:
10 ⁶
Time: 0.001sec | Instructions:
10 ³
Time: 10 ⁻⁶ sec | | 10 ⁹ (large) | Instructions:
(10 ⁹) ² =10 ¹⁸
Time: 31 yrs | Instructions:
3*(10 ⁹) ² =3*10 ¹⁸
Time: <i>95 yrs</i> | Instructions:
100*10 ⁹ = 10 ¹¹
Time: 100sec = 1.6 min | Instructions:
10 ³
Time: 10 ⁻⁶ sec | $10^{18}/10^9 = 10^9 \text{ sec} = 10^9 / (60 \text{sec} * 60 \text{min} * 24 \text{hrs} * 365 \text{days}) = 10^9 / 31536000 = about 31 \text{yrs}$ You can also plot these functions, add or remove terms and see which terms determine the shape. # How to find the dominant term $O(_?_)$ (case with only one variable) - 1. Remove multiplication constants - A term with no variable does NOT disappear. It becomes 1 - E.g. **1000** -> **1** b.c. $1000 = 1000*1 = 1000*N^0 =>$ the constant is 1000, the function is 1 (N⁰) - 2. View each term as a separate function - 3. Keep the function(s) that grow faster than the others - more cases later when we look at expressions with 2 or more variables - 4. Write it in O() Example: $$100N + 3N^2 + 1000 = O(___)$$ - 1. Remove mult constants: $N + N^2 + 1$ (note we still keep 1 for 1000) - 2. Look at terms as fcts: N , N^2 , 1 (e.g.: f(N) = N, $g(N) = N^2$, h(N) = 1) - 3. Keep the faster growing one: N^2 - 1. Fill in O: $O(N^2)$ # Ordering functions by their growth # Ordering functions by their growth - Motivation: - calculation of O - comparing 2 algorithms • Notation: lg(n) for $log_2(N)$ # Ordering functions by their growth - - To compare 2 functions: - plot them (e.g. use this tool) or - * use ratio: take their ratio, simplify, and compare the remaining functions. - Preferred method - You can compute the limit as N goes to infinity - Compare the functions in each pair using their ratio a) $$N^2$$? N^3 $\frac{N^2}{N^3}$ = b) $$N\sqrt{N}$$? N $\frac{N\sqrt{N}}{N}$ = c) $$N\sqrt{N}$$? N^2 $\frac{N\sqrt{N}}{N^2}$ = d) $$lgN$$? log_3N $\frac{lgN}{\log_3 N} =$ # Ordering functions by their growth - Solution - To compare 2 functions: - plot them (e.g. <u>use this tool</u>) or - * use ratio: take their ratio, simplify, and compare the remaining functions. - Preferred method - You can compute the limit as N goes to infinity - Compare the functions in each pair using their ratio a) $$N^2 < N^3$$ $\frac{N^2}{N^3} = \frac{1}{N}$ use **1** grows slower than **N** or $\lim_{N \to \infty} \frac{1}{N} = \mathbf{0}$ \Rightarrow top grows slower b) $$N\sqrt{N} > N$$ $\frac{N\sqrt{N}}{N} = \frac{\sqrt{N}}{1}$ use \sqrt{N} grows faster than 1 or $\lim_{N\to\infty} \frac{\sqrt{N}}{1} = \infty$ \Rightarrow top grows faster c) $$N\sqrt{N} < N^2$$ $\frac{N\sqrt{N}}{N^2} = \frac{1}{\sqrt{N}}$ use **1** grows slower than \sqrt{N} or $\lim_{N\to\infty} \frac{1}{\sqrt{N}} = \mathbf{0}$ \Rightarrow top grows slower d) $$lgN \approx log_3N \frac{lgN}{\log_3 N} = \frac{lgN}{\frac{lgN}{lg^3}} = \frac{lgN}{1} * \frac{lg3}{lgN} = lg3$$ use $lg3$ is a constant $(no\ N)$ or $\lim_{N\to\infty} \frac{lgN}{\log_3 N} = lg3 \Rightarrow same\ growth$ #### Ordering functions by their growth Order in increasing order of growth the functions within each group. - a) polynomial: $N , N^2 , N^{1/2} , N^3 , N^{1/3} , N^{0.1} , N^{0.001}$ - b) logarithmic: $\log_3 N$, $\log_7 N$, $\log_7 (N^2)$ _______ - * True / False : All log functions (that differ in only the base) have the same growth. - c) poly vs log: N, $\lg N$, $N^{1/2}$, $N^{0.001}$ - * Select correct answer: Any log function grows <u>slower / faster</u> than a polynomial function - d) mix: $N , N^2 , IgN , 50 , NIgN , N^3 , N^{1/2} , Iog_5(N)$ - e) exponential: 3^N , 2^N , 5^N , $(1/2)^N$ # Ordering functions by their growth Order in **increasing order of growth** the functions within each group. a) polynomial: N, N^2 , $N^{1/2}$, N^3 , $N^{1/3}$, $N^{0.1}$, $N^{0.001}$ b) logarithmic: log₃N, log₇N, lgN _______ True / False: All log functions (that differ in only the base) have the same growth rate. True / False : $log_7(N)$ and $log_7(N^2)$ have the same growth rate. a) poly vs log: N, $\lg N$, $N^{1/2}$, $N^{0.001}$ Select correct answer: Any log function grows slower / faster than a polynomial function - b) mix: $N , N^2 , IgN , 50 , NIgN , N^3 , N^{1/2} , Iog_5(N)$ - c) exponential: 3^N , 2^N , 5^N , $(1/2)^N$ # Ordering functions by their growth - Solution Order in **increasing order of growth** the functions within each group. - polynomial: $N, N^2, N^{1/2}, N^3, N^{1/3}, N^{0.1}, N^{0.001}$ $N^{0.001}, N^{0.1}, N^{1/3}, N^{1/2}, N, N^2, N^3$ - b) logarithmic: $\log_3 N$, $\log_7 N$, $\lg N$ __SAME growth __ (log₇N, log₃N, lgN) __ **True** / False: All log functions (that differ in only the base) have the same growth rate. **True** / False: $\log_7(N)$ and $\log_7(N^2)$ have the same growth rate. poly vs log: N, $\lg N$, $N^{1/2}$, $N^{0.001}$ ___ $\lg N$, $N^{0.001}$, $N^{1/2}$, N ______ a) Select correct answer: Any log function grows **slower** / faster than a polynomial function - mix: N, N², $\lg N$, 50, $\lg N$, N³, N^{1/2}, $\log_5(N)$ _ 50, $\log_5(N)$, $\lg N$, N^{1/2}, N, $N \lg N$, N², N³, ___ b) - exponential: 3^N , 2^N , 5^N , $(1/2)^N$ ____(1/2)^N , 2^N , 3^N , 5^N _____ - mix with N!, N^N : N!, N^{100} , N^N , 100^N , N^3 , 3^N ___ N^3 , N^{100} , 3^N , 100^N , N^1 , N^N ______ d) High level (use "names"): constant, logarithmic, polynomial, exponential, N!, N^N • 3^{lgN} ? N^2 " 3^{lgN} grows slower than N^2 ." True / False • 5^{lgN} ? N^2 " 5^{lgN} grows slower than N^2 ." True / False # "False polynomial" $$c^{lg(N)} = N^{lg(c)}$$ for any constant c - E.g. $7^{\lg(N)} = N^{\lg(7)}$ - Proof: applying Ig on both sides results in two equal terms: $$lg(c^{lg(N)}) = lg(N^{lg(c)}) = >$$ $$lg(N) * lg(c) = lg(c) * lg(N)$$ • This equality helps identify "false exponentials". E.g. $3^{lg(N)}$ may look like an exponential growth but is really polynomial: $N^{lg(3)}$. - 3^{lgN} < N^2 " 3^{lgN} grows slower than N^2 ." **True** / False $3^{lgN} = N^{lg3} = N^{log}_2$ (3) < N^2 (b.c. $log_2 3 < 2$) - $5^{lgN} > N^2$ " 5^{lgN} grows slower than N^2 ." True / False $5^{lgN} = N^{lg5} = N^{log}_2$ (b.c. $log_2 5 > 2$) ### Ordering functions by their growth Order the functions below in increasing order of growth Order: N, 500, 4^{N} , IgN, N^{N} , $log_{7}(N^{3})$, $(2/3)^{N}$, $N^{0.01}$, NIgN, N^{3} , N!, 1, 5^{IgN} , N^{2} # Summations # Arithmetic with O() - O(1) + O(1) + ... O(1) added T times is O(T). Justification: - Added a variable, T, number of times - O(1) + O(1) + O(1) = O(1) . Justification: - Added a fixed/constant number of times (3) - O(T) + O(T) + O(T) + ... + O(T) added N times is O(NT). Justification: - N*O(T) = O(NT) or - O(T + T + ... + T) = O(NT) - Keep the variable names provided. Do not use N instead of T or vice versa. - WRONG to use N instead of T or vice versa. - Wrong answers: O(N²), O(T²) # Time Complexity for loops # Loop execution and 1iter (code executed in one loop iteration) ``` void ex1() { int A[7] = \{5, 1, 9, 3, 5, 9, 5\}; int N = 7; int T = 4; int k; \rightarrow k = 0; while(k<T){</pre> printf("%4d, ", A[k]); k++; printf("\n"); // for (k = 0; k < T; k++) { printf("%4d, ", A[k]); // } ``` ``` k = 0; while(k<T){ printf("%4d, ", A[k]); k++; }</pre> ``` #### Steps: - 0. Fill out column for iter (r) - 1. Fill in the loop variable name in the 2 blanks in table header - 2. Fill out LV column - Write LV as a function of r . - 1. This is not needed if k has the same values as r (or reversed). - 2. If needed, use this function in last row to solve for r_{last} . - 4. Compute TC_{1iter}(loop_var) - 1. identify code in 1 iter (iter = iteration) - 2. compute its TC - 3. fill in the blanks in $TC_{1iter}(\underline{}) = O(\underline{})$ (top, rightmost cell) - 5. Fill out the TC_{1iter} column. - 1. Careful if loop variable is in O() - 2. May need to use the function from step 3 - 6. Compute the sum of all values in the rightmost column #### Using a table to solve TC of loops | iter (r) | Loop_var (LV) | LV = ?(r) | TC _{1iter} () = O() | |---------------|--|----------------|-------------------------------| | 0 | | | | | 1 | | | | | 2 | | | | | | | | | | r | | | | | ••• | | | | | $r_{last} = $ | , | | | | | um of all values in
er for this loop) | rightmost colu | mn | Last value of k for which the loop condition evaluates true. 22 Use k_{last} , r_{last} and the formula for k as a function of r to compute r_{last} . #### Ex 1 - Worksheet ``` \mathbf{k} = 0; while (k<T) { printf("%4d, ", A[k]); k++; Code executed in 1 iteration of while-k loop: (k<T) -> 0(1) printf(one int) -> 0(1) k++ -> 0(1) => TC_{liter}(k) = O(1)+O(1)+O(1) = O(1) ``` | iter (r) | Loop var (LV) | LV = ?(r) | TC _{1iter} (| |--------------------------|-----------------------|--------------|-----------------------| | 0 | | | | | 1 | | | | | 2 | | | | | | | | | | r | | | | | | | | | | r _{last} = | 1 | | | | Tc _{loop} = sum | of all values in righ | tmost column | | | = | | | | | | | | | Final answer Last value of loop variable for which the loop condition evaluates true. Use k_{last} , r_{last} and the formula for k as a function of r to compute r_{last} . #### Ex 1 - Solution Loop variable is **k** ``` k = 0; while(k<T){ printf("%4d, ", A[k]); k++; }</pre> ``` Code executed in 1 iteration of while-k loop: | | iter (r) | Loop var (LV) | LV = ?(r) | $TC_{1iter}(\mathbf{k}) = O(1)$ | |---|---------------------------|----------------|---|---------------------------------| | | 0 | 0 | | 1 | | _ | 1 | 1 | | 1 | | | 2 | 2 | | 1 | | | | | | | | | r | k | k = r | 1 | | | | | | | | | r _{last} = (T-1) | | (T-1)=k _{last} = r _{last} | 1 | | | _ | ×/11 1 1 1 1 1 | | | Tc_{loop} = sum of all values in rightmost column = 1+1+1+... +1 (T-times) = T Final answer = O(T) Last value of k for which the loop condition, (k<T) evaluates true. Use k_{last} , r_{last} and the formula for k as a function of r to compute r_{last} . ### Ex. 2 ``` for(j = 0; j < N; j++){ for(v = 0; v < T; v + +) { printf(A[v]) Analyzed for(v) -> O(T) (same as prev page) Analyze for j 1iter(j) ``` # Ex. 2 - Solution ``` for(j = 0; j < N; j++){ for(v = 0; v < T; v + +) { printf(A[v]) Analyzed for(v) -> O(T) (same as prev page) Analyze for j 1iter(j) ``` |
 | | |------|--| # Ex. 3 ``` for(j = 0; j < N; j++){ for(v = 0; v<<mark>j</mark>; v++) { printf(A[v]) Analyzed for-v -> O(_) (prev page) Analyze for j 1iter(j) ``` # Ex. 3 - Solution ``` for(j = 0; j < N; j + +){ for(v = 0; v<<mark>j</mark>; v++) { printf(A[v]) Analyzed for-v -> O(_) (prev page) Analyze for j 1iter(j) ``` ``` Ex. 4 ``` ``` for(t = 1; t<N; t=t*3){ for(v = C; v>=1; v--) { printf(A[v]) } } ``` 1iter(j) # Ex. 4 - Solution ``` for(t = 1; t<N; t=t*3){ for(v = C; v>=1; v--) { printf(A[v]) } } ``` 1iter(j) #### Ex. 4 (review from last lecture) ``` for(t = 1 ; t < N ; t = t*3) { for(v = C; v >= 1; v--) { printf(A[v]) } } ``` | r | Loop variable | = ?(r) | TC _{1iter} () = O() | |----------------------|---------------|--------|------------------------------| | 0 | | | | | 1 | | | | | 2 | | | | | 3 | | | | | | | | | | r | | | | | | | | | | r _{last} = | | | | | TC _{loop} = | | | | | r | Loop variable | = ?(r) | TC _{1iter} () = O() | |----------------------|---------------|--------|------------------------------| | 0 | | | | | 1 | | | | | 2 | | | | | 3 | | | | | ••• | | | | | r | | | | | | | | | | r _{last} = | | | | | TC _{loop} = | | | | #### What is the TC for each of these code pieces? Use $TC_{for-t} = O(j)$ and $TC_{for-v} = O(pval)$ ``` for(j = 1 ; j <= N ; j *= 2) { for(t = 0; t < j; t++) { printf("A"); } }</pre> ``` | r | Loop variable | = ?(r) | TC _{1iter} () = O() | |---------------------|---------------|--------|------------------------------| | 0 | | | | | 1 | | | | | 2 | | | | | 3 | | | | | ••• | | | | | r | | | | | ••• | | | | | r _{last} = | | | | ``` TC_{loop}= ``` | for(pval=1, k=1 ; k<=N ; k++, pval*=2){ | |--| | for(v = 0; v < pval; v++) { | | <pre>printf("A");</pre> | | } | | // pval *= 2; | | } | | r | Loop variable | = ?(r) | TC _{1iter} () = O() | |---------------------|---------------|--------|------------------------------| | | | | | | 0 | | | | | 1 | | | | | 2 | | | | | 3 | | | | | | | | | | r | | | | | | | | | | r _{last} = | | | | ### Geometric series general term last term $$S_{p} = \sum_{k=0}^{p} (a^{k}) = 1 + a + a^{2} + a^{3} + a^{4} + \dots + a^{k} + \dots + a^{p} = \frac{a^{p+1}-1}{a-1} = \frac{a*a^{p}-1}{a-1} = \frac{a*a^{p}-1}{a-1}$$ • Solve: • $$1 + 5 + 25 + 125 + ... + 5^k + ... + 5^6 =$$ ______ (number of terms: ______) • $1 + 3 + 9 + 27 + ... + 3^k + ... + 3^9 =$ _____ (number of terms: _____) • $1 + 2 + 4 + 8 + ... + 2^k + ... + 2^{10} =$ _____ (number of terms: _____) - $1 + 2 + 4 + 8 + ... + 2^k + ... + 1024 =$ (number of terms: _____) - $1 + 3 + 9 + 27 + ... + 3^k + ... + 729 =$ (number of terms: _____) - Pay attention to the form in which the last term in the summation is given: 2¹⁰, or 1024. - Do you know the exponent, p, for the last term, or do you know the value, v, of the term ? - If $a^p = v$ then $p = \log_a(v)$. ### Geometric series $$S_{p} = \sum_{k=0}^{p} (a^{k}) = 1 + a + a^{2} + a^{3} + a^{4} + \dots + a^{k} + \dots + a^{p} = \frac{a^{p+1}-1}{a-1} = \frac{a*a^{p}-1}{a-1} = \frac{a*a^{p}-1}{a-1}$$ - Two programs, A, and B, process an array of size N. Fill in the answers in O() for each. - TC of program A is: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^k + ... + 2^N = O(\underline{\hspace{1cm}})$ - TC of program B is: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^k + ... + N = O(\underline{\hspace{1cm}})$ ### Geometric series $$S_{p} = \sum_{k=0}^{p} (a^{k}) = 1 + a + a^{2} + a^{3} + a^{4} + \dots + a^{k} + \dots + a^{p} = \frac{a^{p+1}-1}{a-1} = \frac{a*a^{p}-1}{a-1} = \frac{a*a^{p}-1}{a-1}$$ - Two programs, A, and B, process an array of size N. Fill in the answers in O() for each. - TC of program A is: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^k + ... + 2^N = (2^{N+1}-1) / (2-1) = 2^{N+1}-1 = O(2^N)$ - TC of program B is: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^k + ... + N = 2N-1 = O(N)$ - E.g. if N == 64 : - A: $1 + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^k + ... + 2^{63} + 2^{64} = (2^{65}-1) / (2-1) = 2^{65}-1$ - B: $1+2+4+8+16+32+64=1+2^1+2^2+2^3+2^4+2^5+2^6=2*64-1=128-1=127$ - Note that $2^6 = 64$ # TC of functions - TC of function definition - TC of function call ## Time complexity of function definition ``` // Assumes array nums has at least T elements. // Calculate the TC for the count int count(int nums[], int T, int V) { int count = 0; for(int k=0; k<T; k++) { if (nums[k] == V) count++; } return count; } TCliter(k) = O(1)+O(1) + O(1) +O(1) = O(1)</pre> ``` | r | Loop variable | = ?(r) | TC _{1iter} () = O() | | |----------------------|---------------|--------|------------------------------|--| | | | | | | | 0 | | | | | | 1 | | | | | | 2 | | | | | | 3 | | | | | | ••• | | | | | | r | | | | | | | | | | | | r _{last} = | | | | | | TC _{loop} = | | | | | | | | | | | # Time complexity of function definition vs function call ``` // Assume this function has TC O(T) int count(int nums[], int T, int V) // O(T) ``` ``` // Write the TC for each function call below /* Assume all variables exist and have good values */ count(nums, N, val); // O(count(nums, X, N); // O() count(nums, N+M, val); // O(count(nums, N*N, val); // O(count(nums, 1000, val); // O() count(arr, X, N); // 0() ``` # Time complexity of function definition vs function call ``` // Assume this function has TC O(T) int count(int nums[], int T, int V) // O(T) ``` ``` // Write the TC for each function call below /* Assume all variables exist and have good values */ count(nums, N, val); // O(N) count(nums, X, N); // O(X) count(nums, N+M, val); // O(N+M) count(nums, N*N, val); // O(N^2) count(nums, 1000, val); // O(1) count(arr, X, N); // o(__ x __) ``` ### Time Complexity for Function **Definitions** TC for a function DEFINITION can ONLY depend on the data passed as argument. We assume no global or external variables. ``` E.g. for int count(int nums[], int T, int V){ ... } ``` In the O() for the TC expression we can only have: - variable names that are parameters - E.g. O(T+V) is ok because both T and V are parameters. - E.g. O(N) is wrong because there is no N in the list of parameters - variables that represent a number (typically integer) - E.g. size of the array, size of a data record, max value in an array - It is wrong to say O(nums²) because nums is an entire array. What is nums²? - Remember that TC in the end should give a quantity. - "new" variables - names that are not among the function parameters, but we have clearly defined with respect to the input data. - E.g. "O(N) where N is the number of elements in nums". Here N is not a parameter of count, but I have defined what N represents with respect to nums, and N is an integer. ### Time Complexity for Function Calls The TC for a function CALL is based on - the time complexity of the function definition and - the arguments passed in that call #### Sample problem: ``` The line below indicates that the function search has TC O(S^2). int search (int nums[], int S, int V); // O(S^2) ``` #### Fill in the TC of each line of code below: ``` r=search(nums, M, 7); // O(____) r=search(nums, d, S); // O(____) r=search(nums, T+X, 7); // O(____) r=search(nums, 39,7); // O(____) ``` ## Practice problems - Interesting cases What is the time complexity (TC) of the function definition below? ``` int count_char(char * text) { int count = 0; for(int k=0; k<strlen(text); k++) { if (text[k] == 'A') { count++; } } return count; }</pre> ``` What is the time complexity (TC) of the function definition below? ``` void print_ct_sheep(int X, char * animal) { printf("X=%d, N=%d\n", X, N); for (int k=0; k<X; k++) { printf("%3d %s\n", k, animal); } printf("\n"); }</pre> ``` What is the time complexity (TC) of the function below? ``` int count_char(char * text){ int count = 0; int N = strlen(text); for(int k=0; k<N; k++) { if (text[k] == 'A') { count += strlen(text); return count; ``` ## Math review ## Review log and exponent and closed form (solutions) for common summations $$a^p = N \Rightarrow p = \log_a N \ (Proof: apply \ \log_a \ on \ both \ sides: \ \log_a(a^p) = \log_a N \Rightarrow p = \log_a N)$$ Other useful equalities with $\log: \ a^{\log_a N} = N, \ \log_a(a^p) = p$ $$a^{\log_b N} = N^{\log_b a}$$ $$\log_a N = \frac{\log_b N}{\log_b a} \ (\text{Change of log basis})$$ The **closed form** is the solution for the summation. It is an expression that is equivalent to the summation, but does NOT have any \sum in it. We need the closed form in order to find 0 for that summation. $$\sum_{k=1}^{N} k = 1 + 2 + 3 + 4 + \dots + (N-1) + N = \frac{N(N+1)}{2} = O(N^{2})$$ $$\sum_{k=1}^{N} k^{2} = 1 + 2^{2} + 3^{2} + 4^{2} + \dots + N^{2} = \frac{N(N+1)(2N+1)}{6} = O(N^{3})$$ $$\sum_{k=0}^{N} a^{k} = 1 + a + a^{2} + a^{3} + a^{4} + \dots + a^{N} = \frac{a^{N+1} - 1}{a - 1} = O(a^{N}) \text{ when } a > 1;$$ #### Review #### Techniques for solving summations (useful for O or dominant term calculations) Note that some of these will NOT compute the EXACT solution for the summation Terminology: summation term, summation variable. E.g. in $\sum_{k=1}^{N} kS$, (kS)-summation term, k-summation variable Independent case (term in summation does not have the variable of the summation). $$\sum_{k=1}^{N} S = S + S + S + \dots + S = NS \quad (= S \sum_{k=1}^{N} 1 = SN)$$ Pull constant in front of summation: $\sum_{k=1}^{N} (Sk) = 1S + 2S + 3S \dots + NS = S \sum_{k=1}^{N} k = S \frac{N(N+1)}{2} = O(SN^2)$ Break summation in two summations $$\sum_{k=1}^{N} (kS + k^2) = \sum_{k=1}^{N} kS + \sum_{k=1}^{N} k^2 = S \sum_{k=1}^{N} k + \sum_{k=1}^{N} k^2 = S \frac{N(N+1)}{2} + \frac{N(N+1)(2N+1)}{6} = O(SN^2 + N^3)$$ Drop lower order term from summation term. E. g. 10k is lower order compared to k^2 : $$\sum_{k=1}^{N} (10k + k^2) = \sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6} = O(N^3)$$ Use approximation by integrals for increasing or decreasing f(k) - REMOVED (not required) $$\sum_{S}^{N} f(k) = \Theta(F(N) - F(S))$$ (where F is the antiderivative of f)