
Summary

• Simple runtime problems

• ‘Counting’ instructions

– Detailed

• Terminology and notation:

– log2N = lg N

1

Estimate runtime

• Problem:
The total number of instructions in a program (or a piece of code) is 1012
and it runs on a computer that executes 109 instructions per second. How
long will it take to run this program? Give the answer in seconds. If it is very
large, transform it in larger units (hours, days, years).

• Summary:
– Total instructions: 1012

– Speed: 109 instructions/second

• Answer:
– Time = (total instructions)/speed =

(1012 instructions) / (109 instr/sec) = 103 seconds ~ 15 minutes

• Note that this computation is similar to computing the time it takes to travel
a certain distance (e.g. 120miles) given the speed (e.g. 60 miles/hour).

2

Estimate runtime
• A slightly different way to formulate the same problem:

– total number of instructions in a program (or a piece of code) is
1012 and

– it runs on a computer that executes one instruction in one
nanosecond (10-9 seconds)

– How long will it take to run this program? Give the answer in
seconds. If it is very large, transform it in larger units (hours, days,
years)

• Summary:
– 1012 total instructions

– 10-9 seconds per instruction

• Answer:
– Time = (total instructions) * (seconds per instruction) =

(1012 instructions)* (10-9 sec/instr) = 103 seconds ~ 15 minutes

 3

C conventions

• Body of loops :

– Several instructions with curly braces

– One instruction indented (with or without curly
braces)

– No instruction

• With semicolon, or without

4

Count in detail the total number of instructions executed by each of the
following pieces of code:

// Example A. Notice the ; at the end of the for loop.

temp = 5; x = temp * 2;

for (i = 0; i<n; i++) ;

--

// Example B (source: Dr. Bob Weems)

for (i=0; i<n; i++)

 for (t=0; t<p; t++)

 {

 c[i][t]=0;

 for (k=0; k<r; k++)

 c[i][t]+=a[i][k]*b[k][t];

 }

--
5

Counting instructions: detailed
 Worksheet

Counting instructions: detailed
 Answers

for (init; cond; update) // assume the condition is TRUE n times

 body

// Example A. Notice the ; at the end of the for loop.

temp = 5; x = temp * 2;

for (i = 0; i<n; i++) ;

--

// Example B (source: Dr. Bob Weems)

for (i=0; i<n; i++)

 for (t=0; t<p; t++)

 {

 c[i][t]=0;

 for (k=0; k<r; k++)

 c[i][t]+=a[i][k]*b[k][t];

 }
6

 2 + 1 + 1 + n* (1 + 1 + 0) = 4 + 2n

 1 + 1 + n* (1 + 1 + body_instr_count)

false true

 1 + 1 + n * (1 + 1 + ___) = 2 + n * (2 + 2 + 5*p + 3*p*r) = 2 + 4*n + 5*n*p + 3*n*p*r

 1 + 1 + p* (1 + 1 + 1 + ____) = 2 + p * (3 + 2 + 3*r) = 2 + 5*p + 3*p*r

 1 + 1 + r* (1 + 1 + 1) = 2 + 3 * r

Counting instructions:
sequential vs nested loops

 Worksheet

// Example sequential vs nested

for (t=0; t<n; t++)

 printf("A");

for (i=0; i<p; i++) {

 for (k=0; k<r; k++)

 printf("B");

 }

7

Counting instructions:
sequential vs nested loops

 Answers

// Example sequential vs nested

for (t=0; t<n; t++)

 printf("A");

for (i=0; i<p; i++) {

 for (k=0; k<r; k++)

 printf("B");

 }

8

 ___ + ___ = (2 + 3*n) + (2 + 4*p + 3*p*r)

 1 + 1 + p* (1 + 1 + ____) = 2 + p * (2 + 2 + 3*r) = 2 + 4*p + 3*p*r

 1 + 1 + r* (1 + 1 + 1) = 2 + 3 * r

 1 + 1 + n* (1 + 1 + 1) = 2 + 3*n

CLRS

• The textbook, CLRS, provides a more detailed
analysis that uses different costs (time) for
instructions (based on their type).

– Easy to adapt the above method to do that: just
reapply the method, but count only specific
instructions (assignments, additions,
comparisons,…)

– More details that we will want to skip over in the
end (=> use Big-Oh).

9

Detailed instruction count
 Worksheet

10

/* code adapted from Sedgewick

 Assume A is sorted in increasing order and that left and

right are in range indexes for A.*/

1. int mistery(int A[], int v, int left, int

right){

3. while (left <= right) {

4. int m = (left+right)/2;

5. if (v == A[m]) return m;

6. if (v < A[m])

7. right = m-1;

8. else

9. left = m+1;

10. }

11. return -1;

12. }

• What does this code do?

• Give a detailed count of instructions for the case when the while loop
stops because the condition (left <= right) is false.

