Time Complexity Loops

CSE 3318 – Algorithms and Data Structures Alexandra Stefan

University of Texas at Arlington

CLRS - reference

- Book reference subchapters (the first number is the chapter number):
 - 1.2 Efficiency
 - Problem 1-1
 - See the pseudocode conventions in 2.1
 - In 2.2 see section "Order of growth".
 - 2.1 covers Insertion sort and discusses detailed instruction count part of that. You can revisit this subchapter after we talk about insertion sort.
 - 2.3 we will cover later on.

(CLRS 3rd edition)

Motivation for Big-Oh Notation

- Given an algorithm, we want to find a function that describes the time *performance* of the algorithm.
- Computing the number of instructions in detail is NOT desired:
 - It is complicated and the details are not important
 - The number of machine instructions and runtime depend on factors other than the algorithm:
 - Programming language
 - Compiler optimizations
 - Performance of the computer it runs on (CPU, memory)

(There are some details that we would actually **NOT** want this function to include, because they can make a function unnecessarily complicated.)

- When comparing two algorithms we want to see which one is better for <u>very large data.</u> This is called the asymptotic behavior
 - It is not important what happens for small size data.
 - Asymptotic behavior = rate of growth = order of growth
- The **Big-Oh notation** describes the asymptotic behavior and greatly simplifies algorithmic analysis.

Starting a business?

- Facebook: more than 2.07 billion monthly active users
- Assume:
 - If you start a business that has the potential to grow this much, and
 - Currently you have 30 users
 - You need to buy software and have 2 offers:
 - N²
 - 1000N, also a bit more expensive
 - Switching from one software to the other later on, is undesired (disruption of service, uncertainty, increased cost ...)
- Which one do you choose?

Comparing growth of functions

• Comparing linear, N lg N, and quadratic complexity.

Ν	N lg N	N ²
10 ⁶ (1 million)	≈ 20 million	10 ¹² (one trillion)
10 ⁹ (1 billion)	≈ 30 billion	10 ¹⁸ (one quintillion)
10 ¹² (1 trillion)	≈ 40 trillion	10 ²⁴ (one septillion)

- Quadratic time algorithms become impractical (too slow) much faster than linear and N lg N algorithms.
- Of course, what we consider "impractical" depends on the application.
 - Some applications are more tolerant of longer running times.

Ν	lgN
1000	≈ 10
$10^6 = 1000^2$	≈ 2*10
10 ⁹ =1000 ³	≈ 3*10
10 ¹² =1000 ⁴	≈ 4*10

Θ (Theta) made simple

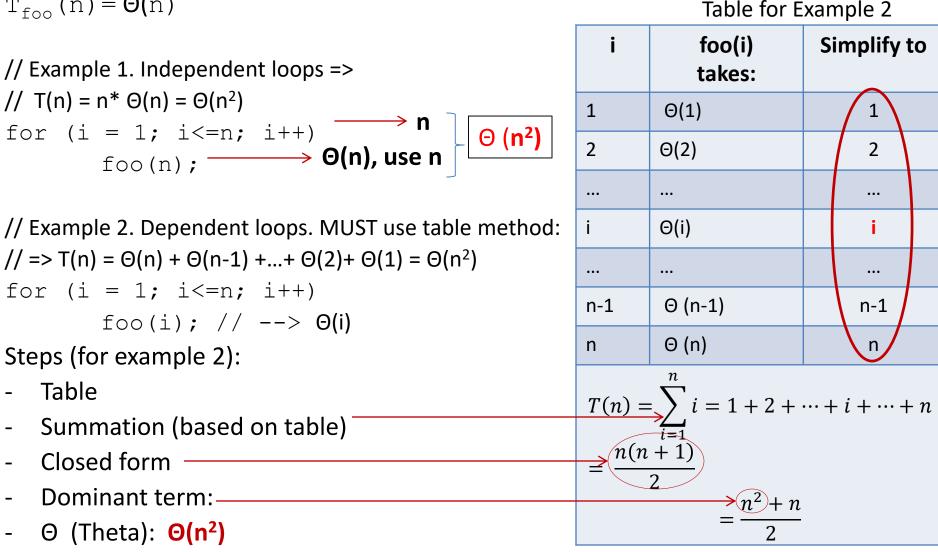
- Detailed instructions counts for many algorithms are polynomial functions. To make calculations simple while still keeping relevant information we will only look at the dominant term for such functions.
- For any function we look at the 'fastest growing term' or the dominant term.
 - E.g. for $f(n) = 15n^3 + 7n^2 + 3n + 20$, the dominant term is $15n^3$.
 - Functions of multiple variables may have more than one dominant term! Consider $f(n,m) = 27n^4m + 6n^3 + 7nm^2 + 100$ (Ask yourself: What if m is small and n is large? What if n is small and m is large?)
- Use Θ ,Theta, for the dominant term but without the constant.
 - This is a oversimplification of Θ . We will study Θ formally in future lectures.
- Notation: f(n) = Θ(n²)
 - if the dominant term of f(n) is n².
- Given a function, e.g. $f(n) = 15n^3 + 7n^2 + 3n + 20$, find Theta:
 - find the dominant term: 15n³
 - remove the constant: n^3
 - $f(n) = \Theta(n^3)$

Function Call Inside Loop

The time complexity for a function call is NOT 1, but the complexity derived from its code.

Assume that void foo(int n) has time complexity: $T_{foo}(n) = \Theta(n)$

If foo(i) has $\Theta(i)$, what is Θ for foo(0)?



Insertion Sort Time Complexity

Insertion Sort – Time Complexity Worksheet

- Assume all instructions have cost 1.

- If interested, see book for analysis using instruction cost.

See <u>TedEd video</u>

```
void insertion_sort(int A[],int N){
    int i,k,key;
    for (i=1; i<N; i++)
    key = A[i];
    // insert A[i] in the
    // sorted sequence A[0...i-1]
    k = i-1;
    while (k>=0) and (A[k]>key)
        A[k+1] = A[k];
        k = k-1;
    }
    A[k+1] = key;
}
```

i	loop itera Worst: i	ations: Average: i/2
1		
2		
N-2		
N-1		

At most:	
At least:	

Review these summations

Useful processing of summation techniques (for Θ or dominant term calculations)

Note that some of these will NOT compute the EXACT solution for the summation

Independent case (term in summation does not have the variable of the summation).

$$\sum_{k=1}^{N} S = S + S + S + \dots + S = NS \quad (= S \sum_{k=1}^{N} 1 = SN)$$

Pull constant in front of summation: $\sum_{k=1}^{N} (Sk) = S \sum_{k=1}^{N} k = S \frac{N(N+1)}{2} = \Theta(SN^2)$

Break summation in two summations

$$\sum_{k=1}^{N} (kS + k^2) = \sum_{k=1}^{N} kS + \sum_{k=1}^{N} k^2 = S \sum_{k=1}^{N} k + \sum_{k=1}^{N} k^2 = S \frac{N(N+1)}{2} + \frac{N(N+1)(2N+1)}{6} = \Theta(SN^2 + N^3)$$

Drop lower order term from summation term. E. g. 10k is lower order compared to k^2 : $\sum_{k=1}^{N} (10k + k^2) = \sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6} = \Theta(N^3)$

Use approximation by integrals for increasing or decreasing f(k):

$$\sum_{S}^{N} f(k) = \Theta(F(N) - F(S)) \text{ (where } F \text{ is the antiderivative of } f)$$

Self study Estimate runtime

• Problem:

The total number of instructions in a program (or a piece of code) is 10¹² and it runs on a computer that executes 10⁹ instructions per second. How long will it take to run this program? Give the answer in seconds. If it is very large, transform it in larger units (hours, days, years).

• Summary:

- Total instructions: 10¹²
- Speed: 10⁹ instructions/second
- Answer:

– Time = (total instructions)/speed =

 $(10^{12} \text{ instructions}) / (10^9 \text{ instr/sec}) = 10^3 \text{ seconds} \sim 15 \text{ minutes}$

• Note that this computation is similar to computing the time it takes to travel a certain distance (e.g. 120miles) given the speed (e.g. 60 miles/hour).

Self study Estimate runtime

- A slightly different way to formulate the same problem:
 - total number of instructions in a program (or a piece of code) is 10¹² and
 - it runs on a computer that executes one instruction in one nanosecond (10⁻⁹ seconds)
 - How long will it take to run this program? Give the answer in seconds. If it is very large, transform it in larger units (hours, days, years)
- Summary:
 - 10¹² total instructions
 - 10⁻⁹ seconds per instruction
- Answer:

Time = (total instructions) * (seconds per instruction) =
 (10¹² instructions)* (10⁻⁹ sec/instr) = 10³ seconds ~ 15 minutes

Self study Counting instructions: detailed

Answers $1 + 1 + n^* (1 + 1 + body_instr_count)$ false true for (init; cond; update) // assume the condition is TRUE n times body // Example A. Notice the ; at the end of the for loop. temp = 5; x = temp * 2;for (i = 0; i<n; i++) / $+1+n^{*}(1+1+0) = 4+2n$ // Example B (source: Dr. Bob Weems) - NOT REQUIRED for (i=0; i<n; i++) → 1+1+n*(1+1+ (2+2+5*p+3*p*r)=2+4*n+5*n*p+3*n*p*r { c[i][t]=0;for $(k=0; k<r; k++) \longrightarrow 1+1+r^*(1+1+1)=(2+3)^*$ c[i][t] += a[i][k] * b[k][t];

Self study

Counting instructions: sequential vs nested loops

Answers

