
Time Complexity 

Loops

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

19/2/2021



CLRS - reference

• Book reference subchapters (the first number is the 
chapter number):
– 1.2 Efficiency
– Problem 1-1
– See the pseudocode conventions in 2.1
– In 2.2 see section “Order of growth”. 

– 2.1 covers Insertion sort and discusses detailed instruction 
count part of that. You can revisit this subchapter after we 
talk about insertion sort.

– 2.3 we will cover later on.

(CLRS 3rd edition)
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Motivation for Big-Oh Notation
• Given an algorithm, we want to find a function that describes the 

time performance of the algorithm.

• Computing the number of instructions in detail is NOT desired:
– It is complicated and the details are not important

– The number of machine instructions and runtime depend on factors other 
than the algorithm:
• Programming language

• Compiler optimizations

• Performance of the computer it runs on (CPU, memory)

(There are some details that we would actually NOT want this function to include, because 
they can make a function unnecessarily complicated.)

• When comparing two algorithms we want to see which one is 
better for very large data. This is called the asymptotic behavior
– It is not important what happens for small size data.

– Asymptotic behavior = rate of growth = order of growth

• The Big-Oh notation describes the asymptotic behavior and 
greatly simplifies algorithmic analysis.
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Starting a business?

• Facebook: more than 2.07 billion monthly active 
users 

• Assume:
– If you start a business that has the potential to grow 

this much, and 
– Currently you have 30 users
– You need to buy software and have 2 offers:

• N2

• 1000N, also a bit more expensive

– Switching from one software to the other later on, is 
undesired (disruption of service, uncertainty, 
increased cost …)

• Which one do you choose?
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Comparing growth of functions

• Comparing linear, N lg N, and quadratic complexity.

• Quadratic time algorithms become impractical (too 
slow) much faster than linear and N lg N algorithms.

• Of course, what we consider "impractical" depends 
on the application. 
– Some applications are more tolerant of longer running 

times.
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N N lg N N2

106 (1 million) ≈ 20 million 1012 (one trillion)

109 (1 billion) ≈ 30 billion 1018 (one quintillion)

1012 (1 trillion) ≈ 40 trillion 1024 (one septillion)

N lgN

1000 ≈ 10

106 =10002 ≈ 2*10

109 =10003 ≈ 3*10

1012 =10004 ≈ 4*10



Θ (Theta) made simple
• Detailed instructions counts for many algorithms are polynomial functions.  To make 

calculations simple while still keeping relevant information we will only look at the 
dominant term for such functions. 

• For any function we look at the ‘fastest growing term’ or the dominant term.
– E.g. for f(n) = 15n3  +7n2+3n+20, the  dominant term is 15n3 .
– Functions of multiple variables may have more than one dominant term!  
Consider  f(n,m) = 27n4m + 6n3 + 7nm2 + 100 
(Ask yourself: What if m is small and n is large? What if n is small and m is large?)

• Use Θ,Theta, for the dominant term but without the constant.
– This is a oversimplification of Θ.  We will study Θ formally in future lectures.

• Notation:  f(n) = Θ(n2)  
– if the dominant term of f(n) is n2.

• Given a function,    e.g. f(n) = 15n3   +7n2+3n+20, find Theta: 
– find the dominant term: 15n3

– remove the constant: n3

– f(n) = Θ(n3)
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Function Call Inside Loop
The time complexity for a function call is NOT 1, but the 
complexity derived from its code. 

Assume that void foo(int n) has time complexity: 
Tfoo(n)= Θ(n)

// Example 1. Independent loops =>

//  T(n) = n* Θ(n) = Θ(n2)

for (i = 1; i<=n; i++)

foo(n);

// Example 2. Dependent loops. MUST use table method: 

// => T(n) = Θ(n) + Θ(n-1) +…+ Θ(2)+ Θ(1) = Θ(n2)

for (i = 1; i<=n; i++)

foo(i); // --> Θ(i)

Steps (for example 2):

- Table

- Summation (based on table)

- Closed form

- Dominant term: 

- Θ (Theta):  Θ(n2) 7

i foo(i) 
takes:

Simplify to

1 Θ(1) 1

2 Θ(2) 2

… … …

i Θ(i) i

… … …

n-1 Θ (n-1) n-1

n Θ (n) n

𝑇 𝑛 = ෍

𝑖=1

𝑛

𝑖 = 1 + 2 + ⋯+ 𝑖 +⋯+ 𝑛

=
𝑛 𝑛 + 1

2

=
𝑛2 + 𝑛

2

n

Θ(n), use n
Θ (n2)

If  foo(i) has Θ(i),
what is Θ for foo(0)?

Table for Example 2



Insertion Sort Time Complexity
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‘Total’ instructions in worst case:  
T(N) = (N-1) + (N-2) + … 2 + 1 = 

= [N * (N-1)]/2 -> N2 order of magnitude
Note that the N2 came from the summation, NOT because 
‘there is an N in the inner loop’ (NOT because N * N).

i
Inner loop time complexity:

Best :            Worst:         Average:
1                  i   i/2

1 1 1 1/2

2 1 2 2/2

… …

N-2 1 N-2 (N-2)/2

N-1 1 N-1 (N-1)/2

Total (N-1) [N * (N-1)]/2 [N * (N-1)]/4 

Order of 
magnitude

N N2 N2

Data that 
produces it.

Sorted Sorted in 
reverse order

Random data => O(N2)
See the Khan Academy for a 
discussion on the use of  O(N2):
https://www.khanacademy.org/c
omputing/computer-
science/algorithms/insertion-
sort/a/insertion-sort

Insertion sort is adaptive

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort


Insertion Sort – Time Complexity
Worksheet

void insertion_sort(int A[],int N){

int i,k,key;

for (i=1; i<N; i++)

key = A[i];

// insert A[i] in the

// sorted sequence A[0…i-1]

k = i-1;

while (k>=0) and (A[k]>key)

A[k+1] = A[k];

k = k–1;

}

A[k+1] = key;

}
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i
Inner loop iterations:

Best :       Worst:    Average:
1                i  i/2

1

2

…

N-2

N-1

At most:

At least:   

- Assume all instructions have cost 1.
- If interested, see book for analysis using instruction cost.

See TedEd video

https://www.ted.com/talks/chand_john_what_s_the_fastest_way_to_alphabetize_your_bookshelf


Useful processing of summation techniques (for Θ or dominant term calculations)
Note that some of these will NOT compute the EXACT solution for the summation 

Independent case (term in summation does not have the variable  of the summation). 

෍
𝒌=1

𝑵

𝑺 = 𝑆 + 𝑆 + 𝑆 +⋯ .+𝑆 = 𝑵𝑺 (= 𝑆෍

𝑘=1

𝑁

1 = 𝑆𝑁)

Pull constant in front of summation:     σ𝑘=1
𝑁 (𝑆𝑘) = 𝑆σ𝑘=1

𝑁 𝑘 = 𝑆
𝑁(𝑁+1)

2
= Θ(𝑆𝑁2)

Break summation in two summations

෍

𝑘=1

𝑁

(𝑘𝑆 + 𝑘2) = ෍

𝑘=1

𝑁

𝑘𝑆 +෍

𝑘=1

𝑁

𝑘2 = 𝑆෍

𝑘=1

𝑁

𝑘 +෍

𝑘=1

𝑁

𝑘2 = S
𝑁(𝑁 + 1)

2
+
𝑁(𝑁 + 1)(2𝑁 + 1)

6
= Θ(𝑆𝑁2 +𝑁3)

𝐷𝑟𝑜𝑝 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚 𝑓𝑟𝑜𝑚 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚. 𝐸. 𝑔. 10𝑘 𝑖𝑠 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑘2:

෍

𝑘=1

𝑁

(10𝑘 + 𝑘2) = ෍

𝑘=1

𝑁

𝑘2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
= Θ 𝑁3

𝑈𝑠𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠 𝑓𝑜𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓 𝑘 :

෍
𝑆

𝑁

𝑓(𝑘) = Θ 𝐹 𝑁 − 𝐹 𝑆 (𝑤ℎ𝑒𝑟𝑒 𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑡𝑖𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑓)
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Review these summations



Estimate runtime

• Problem:
The total number of instructions in a program (or a piece of code) is 1012

and it runs on a computer that executes 109 instructions per second. How 
long will it take to run this program? Give the answer in seconds. If it is very 
large, transform it in larger units (hours, days, years).

• Summary:
– Total instructions: 1012

– Speed: 109 instructions/second

• Answer:
– Time = (total instructions)/speed = 

(1012 instructions) / (109 instr/sec) = 103 seconds ~ 15 minutes

• Note that this computation is similar to computing the time it takes to travel 
a certain distance ( e.g. 120miles) given the speed (e.g. 60 miles/hour). 
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Self study



Estimate runtime
• A slightly different way to formulate the same problem: 

– total number of instructions in a program (or a piece of code) is 
1012 and 

– it runs on a computer that executes one instruction in one 
nanosecond (10-9 seconds)

– How long will it take to run this program? Give the answer in 
seconds. If it is very large, transform it in larger units (hours, days, 
years)

• Summary:
– 1012 total instructions

– 10-9 seconds per instruction

• Answer:
– Time = (total instructions) * (seconds per instruction) = 

(1012 instructions)* (10-9 sec/instr) = 103 seconds ~ 15 minutes
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Self study



Counting instructions: detailed 
Answers

for (init; cond; update)  // assume the condition is TRUE n times

body

// Example A.   Notice the ; at the end of the for loop.

temp = 5; x = temp * 2;

for (i = 0; i<n; i++)   ;  

----------------------------------------------------------------------------------------------

// Example B   (source: Dr. Bob Weems)  - NOT REQUIRED

for (i=0; i<n; i++)     

for (t=0; t<p; t++)

{

c[i][t]=0;

for (k=0; k<r; k++)

c[i][t]+=a[i][k]*b[k][t];

}
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2 + 1 + 1 + n* (1 + 1 + 0) = 4 + 2n

1 + 1 + n* (1 + 1 + body_instr_count) 

false true

1 + 1 + n * (1 + 1 + ___ ) = 2 + n * (2 + 2 + 5*p + 3*p*r) = 2 + 4*n + 5*n*p + 3*n*p*r 

1 + 1 + p* (1 + 1 + 1 +  ____) = 2 + p * (3 + 2 + 3*r) =   2 + 5*p + 3*p*r 

1 + 1 + r* (1 + 1 + 1) =  2 + 3 * r 

Self study



Counting instructions: 
sequential vs nested loops

Answers

// Example sequential vs nested

for (t=0; t<n; t++) 

printf("A");     

for (i=0; i<p; i++) {        

for (k=0; k<r; k++)

printf("B");

}
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___ + ___ = (2 + 3*n)  +  (2 + 4*p + 3*p*r)

1 + 1 + p* (1 + 1  +  ____) = 2 + p * (2 + 2 + 3*r) =   2 + 4*p + 3*p*r 

1 + 1 + r* (1 + 1 + 1) =  2 + 3 * r 

1 + 1 + n* (1 + 1 + 1) =  2 + 3*n 

Self study


