
Sorting Algorithms Properties

Insertion Sort

Binary Search

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

11/16/2025

Summary

• Properties of sorting algorithms

• Sorting algorithms
– Insertion sort – Chapter 2 (CLRS)

• Indirect sorting - (Sedgewick Ch. 6.8 ‘Index and Pointer Sorting’)

• Binary Search
– See the notation conventions (e.g. log2N = lg N)

• Terminology and notation:
– log2N = lg N
– Use interchangeably:

• Runtime and time complexity
• Record and item 2

Sorting

3

Sorting

• Sort an array, A, of items (numbers, strings, etc.).

• Why sort it?

– To use in binary search.

– To compute rankings, statistics (min/max, top-10, top-100,
median).

– Check that there are no duplicates

– intersection and union are easier to perform between 2
sorted sets

– ….

• We will study several sorting algorithms,

– Pros/cons, behavior .

• Insertion sort

• Optional, self study: selection sort. 4

Properties of sorting

• Stable:
– It does not change the relative order of items whose keys are equal.

• Adaptive:
– The time complexity will depend on the input

• E.g. if the input data is almost sorted, it will run significantly faster than if not
sorted.

• see later insertion sort vs selection sort.

5

Other aspects of sorting

• Time complexity: worst/best/average

• Number of data moves: copy/swap the DATA RECORDS
– One data move = 1 copy operation of a complete data record
– Data moves are NOT updates of variables independent of record size (e.g. loop counter)

• Space complexity: Extra Memory used
– Do NOT count the space needed to hold the INPUT data, only extra space (e.g. copy of data)
– Θ(1): In place methods: constant extra memory
– Θ(N): Uses extra space proportional to the number of items:

• For pointers (e.g. linked lists or indirect access)
• For a copy of the data

• Direct vs indirect sorting
– Direct: move items as needed to sort
– Indirect: move pointers/handles to items.

• Can keep the key with pointer or not.

• Later: non-comparison sorting
6

Stable sorting
• A sorting algorithm is stable iff, after it sorts an array, any two records that

compare equal, will still be in the same relative order as they were before
sorting and this happens for every possible input array.

• Example:
– An item consists of an int (e.g. GPA) and a string (e.g. name).

– Sort based on: GPA (integer)

• Stable sort (OK: Tom before Jane and Bob before Anna):

• Unstable sort (violation: Anna is now before Bob):

• Note: Stable is a property of the algorithm, NOT of the algorithm-data pair. You
CANNOT say “This algorithm is stable for this input”. It must be so for all inputs. 7

4
Bob

3
Tom

4
Anna

3
Jane

1
Henry

1
Henry

3
Tom

3
Jane

4
Bob

4
Anna

1
Henry

3
Tom

3
Jane

4
Anna

4
Bob

Stable sorting - Application
• Applications

– Sorting by 2 criteria,
• E.g.: 1st by GPA, 2nd by name:

– When the GPA is the same, have data in order of names

• Solution:

– First sort by name (with any method)

– Next, with a stable sort, sort by GPA

• Alternative solution:

– write a more complex comparison function.

– Part of other sorting methods
• See later: LSD radix sort uses a stable sort (count sort).

8

Proving an Algorithm is Stable

• An algorithm is stable if we can guarantee/prove that this
property happens for any input (not just a few example inputs).

=> To prove it, must use an actual proof (possibly using a loop invariant)
or give a very good explanation. Checking that “it works” on a few
examples is NOT a proof. It must work for every possible input that is valid.

• An algorithm is not stable if there is at least one possible input
for which it breaks the property.

=> To prove it, find one example input for which the property fails.

=> easier to prove.

• Intuition: if an algorithm swaps items that are away from each
other (jump over other items) it is most likely NOT stable.
– This statement is a guideline, not a proof. Make sure you always find an

example if you suspect this case. 9

Insertion sort

10

Insertion sort

11

original

1st

2nd

3rd

4th

5th

6th

5 3 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 5 7 8 0 4

0 3 5 5 7 8 4

0 3 4 5 5 7 8

Each row shows the array after one
iteration of the outer loop (after step j).

Process the array from left to right.
Step j (outer loop):

- elements A[0],A[1],…A[j-1] are already sorted
- insert element A[j] in it’s place among A[0],..A[j-1] (inner loop)

Elements in shaded cells are sorted, but
they have only items that were originally
in the shaded cells. They are not in final
position (e.g. see the 8 move all the way
to the right).

• See TedEd video
• Wikipedia (see “A graphical example of insertion sort”): https://en.wikipedia.org/wiki/Insertion_sort

• Brief and nice resource: http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html

• Animation for version that swaps elements: https://youtu.be/Q1JdRUh1_98 (sent by Aryan)

https://www.ted.com/talks/chand_john_what_s_the_fastest_way_to_alphabetize_your_bookshelf
https://en.wikipedia.org/wiki/Insertion_sort
http://interactivepython.org/runestone/static/pythonds/SortSearch/TheInsertionSort.html
https://youtu.be/Q1JdRUh1_98

Insertion Sort

12

j
Inner loop time complexity:
Best : Worst: Average:

1 j j/2

1 1 1 1/2

2 1 2 2/2

… …

N-2 1 N-2 (N-2)/2

N-1 1 N-1 (N-1)/2

Θ Θ(N) Θ(N2) Θ(N2)

Repetition of while-k
At most: j (Includes end loop check)

At least: 1 (Evaluate:(k>0 and A[k]>key))

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j];

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1;

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr;

}

5 3 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 5 7 8 0 4

0 3 5 5 7 8 4

0 3 4 5 5 7 8

‘Data move’ is an assignment.
(matters if deep copy or pointer is used)
Each red number: 2 moves.
Each blue number: 1 move.
Best: Θ(N)
Worst: Θ(N2) Average: Θ(N2)

Insertion Sort Time Complexity

13

‘Total’ instructions in worst case:
(N-1) + (N-2) + … 2 + 1 =

= [N * (N-1)]/2 -> Θ(N2)
Note that the N2 came from the summation, NOT because
‘there is an N in the inner loop’ (NOT because N * N).

j
Inner loop time complexity:

Best : Worst: Average:
1 j j/2

1 1 1 1

2 1 2 2/2

… …

N-2 1 N-2 (N-2)/2

N-1 1 N-1 (N-1)/2

Total (N-1) [N * (N-1)]/2 [N * (N-1)]/4

Order of
magnitude

Θ(N) Θ(N2) Θ(N2)

Data that
produces it.

Sorted Sorted in
reverse
order

Random
data

=> O(N2)

“O” will be explained in detail later. It says
that the algorithm take at most order of N2.

See the Khan Academy for a discussion on
the use of O(N2):
https://www.khanacademy.org/computing/
computer-science/algorithms/insertion-
sort/a/insertion-sort

Insertion sort is adaptive

void insertion_sort(int A[],int N){

int j,k, curr;

for (j=1; j<N; j++){

curr = A[j];

// insert curr (A[j]) in the

// sorted sequence A[0…j-1]

k = j-1;

while ((k>=0) && (A[k]>curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr;

}

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort

Insertion sort: Time Complexity & Data moves

14

original

1st

2nd

3rd

4th

5th

6th

5 3 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 5 7 8 0 4

0 3 5 5 7 8 4

0 3 4 5 5 7 8

Time complexity

Each row shows the array after one iteration of the outer loop for each algorithm.

‘Data move’ is an assignment. (Implementation will matter: deep copy or pointer)

Each row shows the array after one iteration of the outer loop for each algorithm.

Insert the next element in it’s place in
the sorted sequence to the left of it.

Gray cells are visited by the iterations
of the inner loop => they are
proportional with the time complexity
=> ~ N2/2 (worst case)

5 3 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 7 8 5 0 4

3 5 5 7 8 0 4

0 3 5 5 7 8 4

0 3 4 5 5 7 8

Data moves
Insert the next element in it’s place in
the sorted sequence to the left of it.

Each red number: 2 moves.
Each blue number: 1 move.
Best: 2(N-1) Worst: 2(N-1)+N(N-1)/2
Average:2N+N(N-1)/4

Insertion sort - Properties

• Time complexity: O(N2) (Θ(N) – best, Θ(N2) – worst and average)

• Space complexity: Θ(1) (it does not copy any of array)

• Data moves: Θ(N) – best, Θ(N2) – worst and average

• Adaptive: Yes (Θ(N) – best case, Θ(N2) – worst and average case)

• Stable – Yes

• Direct sorting

15

Insertion sort - Variations

• Note how an algorithm has the capability to be stable but the
way it is implemented can still make it unstable.
– What happens if we use A[k]>=key in line 5?

• Give an implementation that uses a sentinel (to avoid the k>0
check in line 5)
– What is a sentinel?

– Is it still stable? (How do you update/move the sentinel)?

– Time complexity trade-off:

• Cost to set-up the sentinel (linear: find the smallest element in the array) vs

• Savings from removing the k>0 check (quadratic, in worst case).

16

Proving That an Algorithm is Correct

• Required. Read the relevant book section if needed.

• See CLRS, (starting at page 18), for proof of loop invariant
and correctness of the insertion sort algorithm:
• Identify a property that is preserved (maintained, built) by the

algorithm: “the loop invariant” (b.c. preserved by the loop)
– Which loop would you use here?

• Show:
– Initialization: it is true prior to the 1st iteration

– Maintenance (j->j+1): If it is true before an iteration it remains true
before the next iteration

– Termination – use that property/invariant to show that the algorithm
is correct

• What would the loop invariant be for the inner loop for
insertion sort?
• This question may be part of your next homework or quiz. 17

Indirect Sorting

• What if we need access to our data (array/list) in sorted order but

– do not want to move records around

• records are too big

• records are already sorted by another criterion and we need that too.

– cannot move records around.

• only have read access, but no write access

• Solution: Indirect sorting

– Generate a new array with references (e.g. indexes) to records in sorted
order.

18

Indirect Sorting

19

Data

0 709

1 115

2 616

3 201

4 505

5 427

6 934

X

0 1

1 3

2 5

3 4

4 2

5 0

6 6

Ordered

115

201

427

505

616

…

...

The i-th
element in
sorted order
is given by
Data[Idxs[i]]

for (j=0; j<7; j++){

printf("%d\n", Data[X[j]]);

}

j X[j] Data[X[j]]

Indirect Sorting

20

Data

0 709

1 115

2 616

3 201

4 505

5 427

6 934

X

0 1

1 3

2 5

3 4

4 2

5 0

6 6

Ordered

115

201

427

505

616

…

...

The i-th
element in
sorted order
is given by
Data[Idxs[i]]

X

0 0

1 1

2 2

3 3

4 4

5 5

6 6

“Sort” X
with
insertion
sort

1. Create the identity array, X, with indexes 0 to N-1

2. Adapt insertion sort to rearrange the elements of X

1. What do you copy?

2. What do you compare?

3. Return X
1. Language specific issues (C/Java)

Access Data through X: e.g. Data[X[j]]

void insertion_sort(int A[],int N){

int j,k,curr;

for (j=1; j<N; j++){

curr = A[j];

k = j-1;

while ((k>=0) && (A[k] > curr)){

A[k+1] = A[k];

k = k–1;

}

A[k+1] = curr;

}

Indirect Sorting

• Food for thought:

– Example of references:

• indexes

• memory addresses

• offsets in a file

– Can we indirect sort a linked list?

21

Binary Search and Indirect Sorting

22

Binary Search and Indirect Sorting

23

Data

0 709

1 115

2 616

3 201

4 505

5 427

6 934

X

0 1

1 3

2 5

3 4

4 2

5 0

6 6

Ordered

115

201

427

505

616

The j-th
element in
sorted order
is given by
Data[X[j]]

left right m X[m] Data[X[m]] Action: Update
left/right

1. int search(int A[], int N, int v){

2. int left, right;

3. left = 0; right = N-1;

4. while (left <= right)

5. { int m = left+(right-left)/2;

6. if (v == A[m]) return m;

7. if (v < A[m])

8. right = m-1;

9. else

10. left = m+1;

11. }

12. return -1;

13. }

use binary search to
search for values:
115
950
250

Binary Search and Indirect Sorting

24

Data

0 709

1 115

2 616

3 201

4 505

5 427

6 934

X

0 1

1 3

2 5

3 4

4 2

5 0

6 6

Ordered

115

201

427

505

616

The j-th
element in
sorted order
is given by
Data[X[j]]

left right m X[m] Data[X[m]] Action: Update
left/right

1. int search(int A[], int N, int v){

2. int left, right;

3. left = 0; right = N-1;

4. while (left <= right)

5. { int m = left+(right-left)/2;

6. if (v == A[m]) return m;

7. if (v < A[m])

8. right = m-1;

9. else

10. left = m+1;

11. }

12. return -1;

13. }

use binary search to
search for values:
115
950
250

Binary Search

25

Binary Search Iterative

Search for 392 in sorted array.

v = 392

26

0 115

1 201

2 427

3 505

4 616

5 709

6 934

left right middle Action
(comparison)

/* Determines if v is an element of A.

If yes, returns the position of v in A.

If not, returns -1. N is the size of A */

1. int binary_search(int A[], int N, int v){

2. int left, right;

3. left = 0; right = N-1;

4. while (left <= right) {

5. int m = left+(right-left)/2;

6. if (v == A[m]) return m;

7. if (v < A[m])

8. right = m-1;

9. else

10. left = m+1;

11. }

12. return -1;

13. }

• Problem: Determine if object v is in array A. Assume A has size N and is sorted in
ascending order.

• Reduces the search range in half, with a few instructions.

• See animation: https://www.cs.usfca.edu/~galles/visualization/Search.html
– The array stretches on 2 or more lines

https://www.cs.usfca.edu/~galles/visualization/Search.html

Binary Search

Search for v=392 in sorted array:

27

0 115

1 201

2 427

3 505

4 616

5 709

6 934

left right middle Action
(comparison)

0 6 3 392 < 505
(go left)

0 2 1 392 > 201
(go right)

2 2 2 392 < 427
(go left)

2 1 Indexes cross,
stop.
Not found

/* code from Sedgewick

Determines if v is an element of A.

If yes, returns the position of v in A.

If not, returns -1. N is the size of A.

*/

1. int binary_search(int A[], int N, int v){

2. int left, right;

3. left = 0; right = N-1;

4. while (left <= right) {

5. int m = left+(right-left)/2;

6. if (v == A[m]) return m;

7. if (v < A[m])

8. right = m-1;

9. else

10. left = m+1;

11. }

12. return -1;

13. }

Candidates: N, N/2, N/(22) , N/(23), …. , , N/(2x), …., N/(2p) =1 (last value for which the loop will
start) => p = log2N => log2N repetitions
TC1iter() = Θ(1), indep of current number of candiates = right-left+1) =>
Time complexity: Θ(log2N) (logarithmic. V is compared with at most log2N items.
Space complexity: Θ(1)

Binary Search - Recursive
/* Adapted from Sedgewick

*/

int binary_search_rec(int A[], int left, int right, int v)

{

if (left > right) return -1;

int m = left+(right-left)/2;

if (v == A[m]) return m;

if (v < A[m])

return binary_search_rec(A, left, m-1, v);

else

return binary_search_rec(A, m+1, right, v);

}

- How many recursive calls?

- See the correspondence between this and the iterative version.

28

Interpolated search
covered if time permits

29

• Money winning game:

– There is an array, A, with 100 items.

– The items are values in range [1,1000].

– A is sorted.

– Values in A are hidden (you cannot see them).

– You will be given a value, val, to search for in the array and need to either find it (uncover
it) or report that it is not there.

– You start with $5000. For a $500 charge, you can ask the game host to flip (uncover) an
item of A at a specific index (chosen by you). You win whatever money you have left after
you give the correct answer. You have one free flip.

30

Value, val, you are
searching for.

What index will you flip?

524

100

10

Index 0 1 … … 98 99

A

• Money winning game – Version 2 only specific indexes can be flipped.

– There is an array, A, with 100 items.

– The items are values in range [1,100].

– A is sorted.

– Values in A are hidden (you cannot see them).

– You will be given a value, val, to search for in the array and need to either find it (uncover
it) or report that it is not there.

– You start with $5000. For a $500 charge, you can ask the game host to flip (uncover) an
item of A at a specific index (chosen by you). You win whatever money you have left after
you give the correct answer. You have one free flip.

31

Value, val, you are
searching for.

What index will you flip?
0?, 10?, 25?,50?, 75?, 90?, 99?

524

100

10

Index 0 1 … … 98 99

A

Interpolated Binary Search
idx = ??

32

A[left] A[right]

… … … …

left rightidx

v

left rightidx

𝑖𝑑𝑥 = 𝑙𝑒𝑓𝑡 +
𝑟𝑖𝑔ℎ𝑡−𝑙𝑒𝑓𝑡

𝐴 𝑟𝑖𝑔ℎ𝑡 −𝐴 𝑙𝑒𝑓𝑡
(𝑣 − 𝐴 𝑙𝑒𝑓𝑡]

Values range:

Indexes range:

A

How will you compute the index idx of the best element to inspect?

𝑖𝑑𝑥−𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡−𝑙𝑒𝑓𝑡
=

𝑣−𝐴[𝑙𝑒𝑓𝑡]

𝐴 𝑟𝑖𝑔ℎ𝑡 −𝐴 𝑙𝑒𝑓𝑡
⇒

You want idx to be as far away from left relative to the indexes range
(right-left) as v is from A[left] relative to the values range (A[right]-A[left]).

It’s all relative!
v = 50
left = 10
right =40

Case 1:
A[left]=100
A[right]=600
idx = …..

Case 2:
A[left]=100
A[right]=140
idx = ……

Range Transformations
(Math review)

• Draw and show the mappings of the interval edges.

• [0,1) -> [0,n)

• [a,b) -> [0,1) -> [0,n)

• [a,b) -> [0,1) -> [s,t)

– What this transformation is doing is: bring to origin (a->0), scale to 1, scale up
to new scale and translate to new location s. The order mtters! You will see
this in Computer Graphics as well. 33

ab

ax
y

−

−
= ynz =

xny =

sstyz +−=)(

. and that see check, a As

)(

:for formulaDirect

tb-sa-

sst
ab

ax
z

 [s,t)[a,b) -

+−
−

−
=

. and 0 that see check, a As

1

:0 if

nyb-a-

n
ab

ax
z

,n) [[a,b] -

+−

−
=

Pseudocode
(CLRS Page 20)

Conventions

• Indentation shows body of loop or of a branch

• y = x treated as pointers so changing x will change y.

• cascade: x.f.g

• NILL used for the NULL pointer

• Pass by value of pointer: if x is a parameter, x=y will not be preserved but x.j=3
will be (when returned back to the caller fct)

• Pseudocode will allow multiple values to be returned with one return
statement.

• The Boolean operators “and” and “or” are short circuiting: “x != NILL and x.f!=3
” is safe.

• “the keyword “error” indicates that an error occurred because the conditions
were wrong for the procedure to be called.” - CLRS

34

Questions?
• Note lack of details: no types, no specific syntax (C, Java,…)
• But sufficient specifications to implement it: indexes, data updates, arguments, …

	Default Section
	Slide 1
	Slide 2: Summary
	Slide 3: Sorting
	Slide 4: Sorting

	Properties of Sorting Algorithms
	Slide 5: Properties of sorting
	Slide 6: Other aspects of sorting
	Slide 7: Stable sorting
	Slide 8: Stable sorting - Application
	Slide 9: Proving an Algorithm is Stable

	Insertion sort
	Slide 10: Insertion sort
	Slide 11: Insertion sort
	Slide 12: Insertion Sort
	Slide 13: Insertion Sort Time Complexity
	Slide 14: Insertion sort: Time Complexity & Data moves
	Slide 15: Insertion sort - Properties
	Slide 16: Insertion sort - Variations
	Slide 17: Proving That an Algorithm is Correct

	Indirect Sorting
	Slide 18: Indirect Sorting
	Slide 19: Indirect Sorting
	Slide 20: Indirect Sorting
	Slide 21: Indirect Sorting
	Slide 22: Binary Search and Indirect Sorting
	Slide 23: Binary Search and Indirect Sorting
	Slide 24: Binary Search and Indirect Sorting

	Binary Search
	Slide 25: Binary Search
	Slide 26: Binary Search Iterative
	Slide 27: Binary Search
	Slide 28: Binary Search - Recursive

	Interpolated Search
	Slide 29: Interpolated search covered if time permits
	Slide 30
	Slide 31
	Slide 32: Interpolated Binary Search idx = ??
	Slide 33: Range Transformations (Math review)

	CLRS pseudocode conventions
	Slide 34: Pseudocode (CLRS Page 20)

