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𝑎𝑝 = 𝑁 ⇒ 𝑝 = log𝑎 𝑁 𝑃𝑟𝑜𝑜𝑓: 𝑎𝑝𝑝𝑙𝑦 log𝑎 𝑜𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠: log𝑎(𝑎
𝑝) = log𝑎𝑁 ⇒ 𝑝 = log𝑎 𝑁

Other useful equalities with log:             𝑎log𝑎 𝑁 = 𝑁, log𝑎(𝑎
𝑝) = 𝑝

𝒂𝐥𝐨𝐠𝒃 𝑵 = 𝑵𝐥𝐨𝐠𝒃 𝒂

log𝑎𝑁 =
log𝑏 𝑁

log𝑏 𝑎
(Change of log basis)

The closed form is the solution for the summation. It is an expression that is equivalent to the 
summation, but does NOT  have any σ in it . 

We need the closed form in order to find O for that summation.

෍

𝑘=1

𝑁

𝑘 = 1 + 2 + 3 + 4 +⋯+ 𝑁 − 1 + 𝑁 =
𝑵(𝑵 + 𝟏)

𝟐
= 𝑂(𝑁2)

෍

𝑘=1

𝑁

𝑘2 = 1 + 22 + 32 + 42 +⋯++𝑁2 =
𝑵(𝑵 + 𝟏)(𝟐𝑵 + 𝟏)

𝟔
= 𝑂 𝑁3

෍

𝑘=1

𝑁

𝑎𝑘 = 𝑎+ 𝑎2 + 𝑎3 + 𝑎4 +⋯+ 𝑎𝑁 =
𝒂𝑵+𝟏 − 𝟏

𝒂 − 𝟏
= 𝑂 𝑎𝑁 𝑤ℎ𝑒𝑛 𝑎 > 1; 𝑓𝑜𝑟 𝑎 < 1 𝑖𝑡 𝑖𝑠 𝑂(1)
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Review log and exponent and 
closed form (solutions) for common summations



Techniques for solving summations (useful for O or dominant term calculations)
Note that some of these will NOT compute the EXACT solution for the summation 

Terminology: summation term, summation variable. E.g. in σ𝑘=1
𝑁 𝑘𝑆 , (kS)-summation term,  k –summation variable

Independent case (term in summation does not have the variable  of the summation). 

෍
𝒌=1

𝑵

𝑺 = 𝑆 + 𝑆 + 𝑆 +⋯ .+𝑆 = 𝑵𝑺 (= 𝑆෍

𝑘=1

𝑁

1 = 𝑆𝑁)

Pull constant in front of summation:     σ𝑘=1
𝑁 (𝑆𝑘) = 1𝑆 + 2𝑆 + 3𝑆 …+ 𝑁𝑆 = 𝑆σ𝑘=1

𝑁 𝑘 = 𝑆
𝑁(𝑁+1)

2
= 𝑂(𝑆𝑁2)

Break summation in two summations

෍

𝑘=1

𝑁

(𝑘𝑆 + 𝑘2) = ෍

𝑘=1

𝑁

𝑘𝑆 +෍

𝑘=1

𝑁

𝑘2 = 𝑆෍

𝑘=1

𝑁

𝑘 +෍

𝑘=1

𝑁

𝑘2 = S
𝑁(𝑁 + 1)

2
+
𝑁(𝑁 + 1)(2𝑁 + 1)

6
= 𝑂(𝑆𝑁2 + 𝑁3)

𝐷𝑟𝑜𝑝 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚 𝑓𝑟𝑜𝑚 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚. 𝐸. 𝑔. 10𝑘 𝑖𝑠 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 𝑘2:

෍

𝑘=1

𝑁

(10𝑘 + 𝑘2) = ෍

𝑘=1

𝑁

𝑘2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6
= 𝑂 𝑁3

𝑈𝑠𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑠 𝑓𝑜𝑟 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑟 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓 𝑘 − 𝑅𝐸𝑀𝑂𝑉𝐸𝐷 (𝑛𝑜𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑)

෍
𝑆

𝑁

𝑓(𝑘) = Θ 𝐹 𝑁 − 𝐹 𝑆 (𝑤ℎ𝑒𝑟𝑒 𝐹 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑡𝑖𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑓)
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Review



#include <stdio.h>

int linear_search(int ar[], int S, int val);

int main(){

char fname[100];

int mx_size, N, i, M, val;

FILE *fp;

printf("Enter the filename: ");

scanf("%s", fname);

fp =fopen(fname, "r");

if (fp == NULL){

printf("File could not be opened.\n");        return 1;

}

fscanf(fp, "%d %d", &mx_size, &N);

int nums1[mx_size]; 

//int* nums1 = malloc(mx_size * sizeof(int));

// read from file and populate array

for (i = 0; i < N; i++) {

fscanf(fp, "%d ", &nums1[i]);

}

int found = linear_search(nums1, N, 67);

printf("\nreturned index:%d\n", found);

// read the second line of numbers from file and search for them in nums1

fscanf(fp, "%d", &M);

for(i=0; i<M; i++){

fscanf(fp, "%d", &val);

found = linear_search(nums1, N, val);

printf("\nreturned index:%d\n", found);

}

fclose(fp);

return (EXIT_SUCCESS);

}

// Assumes array ar has S elements.

int linear_search(int ar[], int S, int val){

printf("\n Searching for %d ...\n",val);

for(int i=0; i<S; i++) {

printf("%4d|", ar[i]); 

if ( ar[i] == val )

return i;

}

printf("\n");

return -1;

}

4

30 5

3 7 10 19 20

10

67 20 -3 9 7 1 22 13 8 6 

Sample data file 1:

10 7

5 10 13 20 26 30 37

4

67 22 -3 10 

Sample data file 2:

// Assumes array nums has at least T elements.

int count(int nums[], int T, int V){

int count = 0;

for(int k=0; k<T; k++) {

if ( nums[k] == V )

count++;

}

return count;

}



Terms and notation
• input size 

– number of items 

• e.g. size of array

– two numbers 

• if 2 arrays are processed, size of each array

• for a graph: number of edges and number of 
vertices

– number of bits needed to represent input value

• e.g. when finding is a number is prime

• runtime of a program = number of primitive 
instructions executed

– a primitive instruction executes in constant 
time

– a function call is NOT a primitive instruction

– notation: T(n)

– it is often a polynomial function 

– given in terms of input size

• order or growth/growth rate/asymptotic 
behavior

– use the leading/dominant term of the 
polynomial

– 10n2-70n+1000 = O(n2)

– behavior as n goes to infinity

• time complexity (TC) of a program = order of
growth of its runtime
– E.g. O(n2)

• space complexity (SC) of a program = amount 
of space a program uses, excluding the space 
used for input and output
– given in in O notation

– E.g.: O(1), O(n), O(lgn)

• lg(n) = log2(n)  (log base 2 of n)

5



Time complexity of 
function definition vs function call

6

// Assumes array nums has at least T elements.

int count(int nums[], int T, int V){

int count = 0;

for(int k=0; k<T; k++) {

if ( nums[k] == V )

count++;

}

return count;

}

// Write the TC for each function call below

/* assume all variables exist and have good 

values  */

count(nums, N, val);

count(nums, X, N);

count(nums, N+M, val);

count(nums, N*N, val);

count(nums, 1000, val);

count(arr, X, N);



Time Complexity for Function Definitions and Function Calls
TC for a function DEFINITION can ONLY depend on the data 
passed as argument  E.g. for

int count(int nums[], int T, int V){

…

}

In the TC expression, O, we can only have:

• variable names that are parameters

• E.g. O(T+V) is ok because both S and V are parameters.

• E.g. O(N) is wrong because there is no N in the list of parameters

• variables that represent a number (typically integer) 

• E.g. size of the array, size of a data record, max value in an array

• It is wrong to say O(nums2) because nums is an entire array. What 
is nums2?

• Remember that TC in the end should give a quantity. 

• DEFINED “new” variables 

• I can use names that are not among the function parameters, but I 
have clearly define them with respect to the input data. E.g. I can 
say “O(N) where N is the number of elements in ar”. Here N is not 
a parameter of count, but I have defined what N represents 
with respect to nums, and N is an integer.

Solve the examples with strings from the next page

The TC for a function CALL is based on the time complexity of 
the function definition and the arguments passed when called. 

E.g. given the TC for a function definition in terms of its signature:

int search(int nums[], int S, int V) // has TC  O(S2)

when called, we replace the S with whatever data is passed in the 
function call (pay special attention to constants-see example below) . E.g.

We can find the TC of function calls:

r=search(nums, M, 7); //   O(M2)

r=search(nums, d, S); //   O(d2), not S2

r=search(nums, T+X, 7); //  O(   (T+X)2   ) 

r=search(nums, 39,7); // O(1)     1, not 39

To understand why we simply substitute the corresponding argument 
variables in the TC, here is a discussion at the Assume that the  Θ(S2) 
time complexity of the above function comes from the detailed 
instruction count: 7S2 + 12S + 9 . When the function is called with M for S 
(e.g. in search(arr1, M, 7)  ) the detailed count becomes 7M2

+ 12M + 9  which is Θ(M2) 
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What is the time complexity (TC) of the function definitions below? 

/* Assumes text is a good string (NULL terminated).

text could have been allocated either dynamic 

(with malloc/calloc) or static (with [])   */

int count_char(char * text){

int count = 0;

for(int k=0; k<strlen(text); k++) {

if ( text[k] == 'A' ){

count++;

}

}

return count;

}

/* Assumes animal is a good string (NULL terminated).

animal could have been allocated either dynamic 

(with malloc/calloc) or static (with [])   */

void print_ct_sheep(int X, char * animal){

printf("X=%d, N=%d\n", X, N);

for (int k=0; k<X; k++){

printf("%3d %s\n", k, animal);

}

printf("\n");

}
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TC for Loops
• Notation:  

– lg = log2 𝑒. 𝑔. 𝑙𝑔𝑁 = log2𝑁

• O(1) – constant time complexity (does not depend on the data size).

– Note: use 1, NOT any other number. E.g. O(1), not O(35)

• for time complexity in general, give the WORST case. E.g. if a loop can 
terminate earlier (e.g. because it finds a value and returns), when asked for the 
time complexity, assume the loop repeats as much as possible (give the worst 
case TC). Here you may want to (or be asked to) discuss the special cases: 

• Best case (when it repeats the least number of times) 

• Average case (what is the average over multiple executions/runs) and 

• Worst case (the worst behavior for one execution).

• TC calculation for large code: 

– from small to large code pieces; 

– “simplify” at every step

• TC may be discussed in terms of a specific operation. E.g.: “How many data 
comparisons does insertion sort do?” In that case you compute the TC for ONLY 
the code that executes and includes the comparisons. 

• Data size and Pseudo linear time complexity.
– One integer value, N, needs only lgN bits to be stored. If TC is Θ(N) => it is Θ(2lgN) exponential 

• O – arithmetic

– O(N) + O(S) = O(N+S)

– O(N) + O(S+N2) + O(U) = O(N+S+N2+U) = O(S + N2 + U)

– O(N)* O(k) =  O(Nk)

– In a summation “pull O out”: σ𝑘=1
𝑁 𝑂 𝑘 = 𝑂 σ𝑘=1

𝑁 𝑘 = 𝑂
𝑁 𝑁+1

2
= 𝑂 𝑁2

• Loops terminology: 
– Loop variable – variable that controls the loop (i/j/k/…). 

– Loop repetitions – “how many times the loop repeats” : 
the loop control condition evaluates to true and the 
loop body and header instructions execute 

– One iteration

– TC1iter - time complexity (as O) for all instructions 
executed in 1 iteration of the loop, including fct calls.

• TC1iter

– Show the loop variable as an argument, e.g. TC1iter (j)

– Typically it is based on the body of the loop 
(instructions between { }). 

– but check the loop condition and the variable update as 
well. They may include function calls and the dominant 
term may come from there. (Most often these are 
simple instructions, e.g.:   i<N,   i++ .)

• Loop repetitions – approximate number: 
– e.g. log2N instead of 1 + log2𝑁

• Change of variable 
– needed if loop variable does not take consecutive 

values

• Summation – must be used if TC1iter depends on loop 
variable. (dependent case, e.g. TC1iter (j)=j2 ) 

• Summation method (the general method) handles all 
loop cases correct. 

9

TC - general



Change of variable
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for(i=1; i<=N; i=i+1){  // i takes consecutive values

...

}

for(i=0; i<=N; i=i+5){   // i does NOT take consecutive values

... //Θ(i) code

}

for(i=1; i<=N; i=i*2){   // i does NOT take consecutive values

... //Θ(i) code

}

See also:
for(i=N; i>=1; i=i/2){  

... //Θ(i) code

}

for(i=N; i<=0; i=i-3){

... //Θ(i) code

}

for(i=1; i<=N; i=i+i){  

... //Θ(i) code

}

When the variable in a loop does not take consecutive values, it becomes harder to calculate the 
following (and be confident in your answer):
1. How many iterations the loop does
2. The time complexity for the entire loop

We will use a change of variable to write the original loop variable as  a function of another variable 
that DOES take consecutive values.          E.g. i = 7x where x takes consecutive values 0,1,2,3…, N/7 .
Another way to look at this. Most common loops that appear in code, generate values from either an 
arithmetic series or a geometric one. With the change of variable we identify the series.



Change of variable – Math/programming - Arithmetic Series 
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for(i=s; i<=(3*N+7); i=i+d){  // general case
...

}

Values of i:  s,     s+d,     s+2d,    s+3d,     s+4d,….., s+x*d , … s+p*d=ilast ≤ (3N+7)
Values of x:  0,      1,          2,          3,            4,…,     x, …, p   
 i = s+x*d  
 s+p*d = ilast = (3N+7)  (we used use = instead of ≤ to make math easy)

 p = (3N+7-s)/d   

+d +d +d +d

x i = f(x) = s+xd

0 s

1 s+d

2 s+2d

3 s+3d

… …

x i

... …

p ilast =s+dp ≤(3N+7)  

Values of i:        0,       5,      10,      15,     20,….., i , … ilast ≤ N

5*0,   5*1,   5*2,    5*3,   5*4,  …, 5x ,… , 5p

Values of x:         0,        1,       2,        3,        4,…,     x, …,    p 

 i = 5x  
 5p = ilast = N  (we used use = instead of ≤ to make math easy)

 p = N/5

+5 +5 +5 +5

for(i=0; i<=N; i=i+5){  // easy case
...

}

x i=f(x)=5x i

0 5*0 0

1 5*1 5

2 5*2 10

3 5*3 15

… … …

x 5*x i

... … …

p 5*p ilast ≤N  

Each table on the right has 
ONE ROW for EACH 
ITERATION of the 
corresponding loop on the 
left.
It shows:
- i as a function of a 

variable x where x takes 
consecutive values

- what values x takes



Change of variable – Math/programming - Geometric series 
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Values of i: s*d0,  s*d1,    s*d2,   s*d3,    s*d4,…,  s*dx,… , s*dp =ilast ≤ (5N-3)
Values of x:    0,       1,          2,         3,         4,   …,    x,     …,  p   
 i = s*dx

 s*dp = ilast = (5N -3) (we used use = instead of ≤ to make math easy)

 𝑝 = log𝑑
5𝑁−3

𝑠

for(i=s; i<=(5*N-3); i=i*d){  // general case
...

}

*d *d *d *d

x i=s*dx

0 s*d0

1 s*d1

2 s*d2

3 s*d3

… …

x s*dx

... …

p s*dp =ilast ≤ (5N-3)

Values of i:   1,      2,       4,       8,      16,….., i , … ilast ≤ N
20,    21,     22,     23,      24,…,  2x,… , 2p

Values of x:  0,       1,      2,      3,        4,…,    x, …, p   
 i = 2x

 2p = ilast = N  (we used use = instead of ≤ to make math easy)

 p = log2N     (b.c. 2p = N )

*2 *2 *2 *2

for(i=1; i<=N; i=i*2){  // easy case
...

}

x i =  2x

0 20

1 21

2 22

3 23

… …

x 2x

... …

p 2p = ilast ≤N

Each table on the right has 
ONE ROW for EACH 
ITERATION of the 
corresponding loop on the 
left.
It shows:
- i as a function of a 

variable x where x takes 
consecutive values

- what values x takes



The Four Cases of
Time Complexity Calculations for Loops

(or use summation always and no special cases)
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Loop and solution fill in pattern 

14

// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(i=1; i<=N; i=i+1){

res = linear_search(nums1,M,7); // O(M)
printf("index = %d\n", res);

}

It
er

at
io

n
 

o
f 

lo
o

p i TC1iter(__) 
= ___

Sample 
detailed 
count:

1st

2nd

3rd

…

ith

…

(N-
1)th

Nth

Total: ________________

Check that when adding the detailed count, 
we get the same time complexity

for-i:  TC1iter(  __  ) =  O(__) dependent / independent of loop variable
Change of var:     _________

σ / repetitions :     _____________________

Closed form:   _____ O( _____ )

Color code for the above info:
- Black – given pattern
- Red & bold - required answer
- Dark blue – another possible answer that is also correct 
- Green - explanation for understanding the material, not needed in a homework/exam answer



Case 1: independent + NO change of variable 
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// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(i=1; i<=N; i=i+1){

res = linear_search(nums1,M,7); // O(M)
printf("index = %d\n", res);

}

It
er

at
io

n
 

o
f 

lo
o

p i TC1iter(i) = 
O(M)

Sample 
detailed 
count:

1st 1 M 7M + 12

2nd 2 M 7M + 12

3rd 3 M 7M + 12

… … … …

ith i M 7M + 12

… … … …

(N-
1)th

N-1 M 7M + 12

Nth N M 7M + 12

Total: M+M+M+…+M+…M = N*M = NM
Adding all the terms in the TC1iter column  
gives the time complexity for all the code.

NM is the final result.
Common error: take this result (NM) and multiply it 
by N again. WRONG! 

Check that when adding the detailed count, 
we get the same time complexity

for-i:  TC1iter(  i ) =  O(M) dependent / independent of loop variable  (no i in O(M) )
Change of var:   No (b.c. i takes consecutive values)

σ / repetitions     N repetitions * O(M) (b.c. independent)

also ok  to solve it using summation: σ𝑖 O(M) = σ𝑖=1
𝑁 𝑀 = 𝑀𝑁 = 𝑂(𝑀𝑁)    

Closed form:   MN O( MN )   **This answer cannot have i or T in it

Color code for the above info:
- Black – given pattern
- Red & bold - required answer
- Dark blue – another possible answer that is also correct 
- Green - explanation for understanding the material, not needed in a homework/exam answer



Case 2: dependent + NO change of variable 
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// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(k=1; k<=N; k=k+1){

res = linear_search(nums1,k,7); // O(k)
printf("index = %d\n", res);

}

It
er

at
io

n
 

o
f 

lo
o

p k TC1ter(k) = 
O(k)

Sample 
detailed 
count:

1st 1 1 7*1 + 12

2nd 2 2 7*2 + 12

3rd 3 3 7*3 + 12

… … … …

kth k k 7*k + 12

… … … …

(N-
1)th

N-1 N-1 7*(N-1) + 12

Nth N N 7*N + 12

Total: 1+2+3+…+k+…N = N*(N+1)/2 = 
Θ(N2)
Adding all the terms in the TC1iter column  
gives the time complexity for all the code.
Common error: take this result and multiply 
it by N again. WRONG! 

Check that when adding the detailed count, 
we get the same time complexity

for-k:  TC1iter(  k  ) = O(k) dependent / independent of loop variable (k in O(k))
Change of var:   No ( k takes consecutive values)

σ / repetitions (must use summation b.c. not independent)

σ𝒌 O(k) = σ𝒌=𝟏
𝑵 𝒌 = 𝟏 + 𝟐 + 𝟑 +⋯+𝑵 =

𝑵 𝑵+𝟏

𝟐

Closed form:   
𝑵 𝑵+𝟏

𝟐
O( N2 )   **This answer cannot have k or T in it

Color code for the above info:
- Black – given pattern
- Red & bold - required answer
- Green - explanation for understanding the material, not needed in a homework/exam answer



Case 3: independent + change of variable 
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// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(t=1; t<=N; t=t*2){

res = linear_search(nums1,M,7); // O(M)
printf("index = %d\n", res);

}

It
er

at
io

n
 

o
f 

lo
o

p x t TC1iter(t) 
=  O(M)

Sample 
detailed 
count:

1st 0 1   (=20) M 7*M + 12

2nd 1 2   (=21) M 7*M + 12

3rd 2 4   (=22) M 7*M + 12

… … … …

x t    (=2x) M 7*M + 12

… … … …

pth p-1 M 7*M + 12

last
(p+1)th

p 
=log2N

tlast (=2p)
2p=t

last ≤N
M 7*M + 12

Total: M+M+M+…+M+…+M = M*log2N = Θ(M*log2N )
Adding all the terms in the TC1iter column  gives the time 
complexity for all the code.
Common error: take this result and multiply it by N or log2N. 
WRONG! 

Check that when adding the detailed count, we get the same 
time complexity

for-t  TC1iter(  t ) =  O(M) dependent / independent of loop variable 
Change of var:   Yes (t does not take consecutive values)
1, 2, 4, 8, …. , t=2x, …, 2p=tlast <=N  => p  = log2(N)

σ / repetitions    lg(N) repetitions * O(M) (b.c. independent)

also ok  with summation: σ𝑡 O(M) = σ𝑥=0
𝑝

𝑀 = σ𝑥=0
𝑙𝑔𝑁

𝑀 = 𝑀(1 + 𝑙𝑔𝑁)

Closed form:   MlgN O( MlgN )  **final O cannot have t or T
also ok closed form: M(1+lgN)

Color code for the above info:
- Black – given pattern
- Red & bold - required answer
- Dark blue – another possible answer that is also correct 
- Green - explanation  for understanding the material, not needed in a 

homework/exam answer



Case 4: dependent + change of variable 
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// Assume int linear_search(int* ar, int T, int v) has TC O(T)

for(i=1; i<=N; i=i*2){

res = linear_search(nums1,3*i,7); // O(i)
printf("index = %d\n", res);

}

It
er

at
io

n
 

o
f 

lo
o

p x i TC1iter(i) 
= O(i)

Sample 
detailed 
count:

1st 0 1   (=20) 1 7*(3*1) + 12

2nd 1 2   (=21) 2 7*(3*2) + 12

3rd 2 4   (=22) 4 7*(3*4) + 12

… … … …

x i (=2x) 2x 7*(3*2x) + 12

… … … …

p-1 2p-1 7*(3*2p-1) + 12

last p=
log2N

ilast (=2p)
2p=ilast ≤N

2p 7*(3*2p) + 12

Total: 1+2+4+8+16+…+2x+…+2p =…= 2N-1 = O(N)
Adding all the terms in the TC1iter column  gives the time 
complexity for all the code.
Common error: take this result and multiply it by N or log2N 
again. WRONG! 

Check that when adding the detailed count, we get the same 
time complexity

for-i:  TC1iter(  i ) = O(i) dependent / independent of loop variable (i in O(i))
Change of var:   
1, 2, 4, 8, …. , i=2x, …, 2p=ilast <=N  => p  = log2(N)

σ / repetitions (must use summation b.c. not independent)

σ𝒊 Θ(i) = σ𝒙=𝟎
𝒑

𝟐𝒙 =
2𝑝+1−1

2−1
= 2 ∗ 2𝑝 − 1 = 2 ∗ 2log2 𝑁 − 1 = 2𝑁 − 1

Closed form:  𝟐𝑵 − 𝟏 O( N )   **This O cannot have i,x p, or T in it.

(Note that here if summation is not user or change of variable is skipped, you 
may get the wrong answer: 1+2+3+..+N = O(N2) )

Color code for the above info:
- Black – given pattern
- Red & bold - required answer
- Green - explanation for understanding the material, not needed in a 

homework/exam answer



Summary
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for(i=1; i<=N; i=i+1){

res = linear_search(nums1,M,7); // O(M)
printf("index = %d\n", res);

}

TC1iter(i) = O(M), independent of i (=> can use repetitions)

change of var : NO (i takes consecutive values)
Repetitions: 𝑁 ∗ 𝑂 𝑀 = 𝑂(𝑀𝑁)

(Solution with summation:  σ𝑖𝑂(M) = σ𝑖=1
𝑁 𝑂(𝑀) = 𝑁 ∗ 𝑂 𝑀 = 𝑂(𝑀𝑁)

for(k=1; k<=N; k=k+1){

res = linear_search(nums1,k,7); ); // O(k)
printf("index = %d\n", res);

}

TC1iter(k)= O(k), dependent of k  (=> must use summation)

change of var : NO (k takes consecutive values)

Summation: σ𝑘𝑂(k) = σ𝑘=1
𝑁 𝑂(𝑘) = σ𝑘=1

𝑁 𝑘 =
𝑁(𝑁+1)

2
=

𝑂(𝑁2)

for(t=1; t<=N; t=t*5){

res = linear_search(nums1,M,7); // O(M)
printf("index = %d\n", res);

}

TC1iter(t)= O(M), independent of  t (=> can use repetitions)

change of var : YES (bc t does NOT take consecutive values)
Values of t: 1,5,25, 125, … , i=5x, … , 5p= ilast<=N  => p = log5N  
Repetitions : p = log5N =>  O(𝑀𝑝) = 𝑂(𝑀 (log5𝑁))

(Solution with summation: 
σ𝑡O(M) = σ𝑥=0

𝑝
𝑂(𝑀) = 𝑂(𝑀𝑝) = 𝑂(𝑀 (log5𝑁)) )

for(i=1; i<=N; i=i*5){

res = linear_search(nums1,i,7); // O(i)
printf("index = %d\n", res);

}

TC1iter(i)= O(i), dependent of i (=> must use summation)

Change of var: YES (i does NOT take consecutive values) :
Values of i: 1,5, 25, 125, … , i=5e, … , 5p= ilast<=N  => p = log5N  

Summation : σ𝑖𝑂(i) = σ𝑖 i = σ𝑒=0
𝑝

5𝑒 =
5𝑝+1−1

5−1
=

5∗5𝑝−1

4
=

𝑂 5𝑝 = 𝑂 5log5 𝑁 = 𝑂 𝑁

// Assume that the function linear_search(int num1[], int S, int val) has time complexity O(S)



Good example: change of variable with i2 in TC1iter

// assume that the time complexity of foo(int t, int M) is  O(t2M)

for(i=0; i<N; i=i+4)

foo(i,M);         

replace i2 with (4x)2
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for-i:  TC1iter(i) = O(i2M)  Dependent ()
change of var. i: 0,4, 8, 12, …   i=4x,  ilast = 4p = N => p = N/4

σ𝑖𝑂(𝑖
2𝑀) = σ𝑥=0

𝑁/4
[(4𝑥)2𝑀] = 16𝑀σ𝑥=0

𝑁/4
𝑥2 = 16𝑀

𝑵

𝟒
(
𝑵

𝟒
+𝟏)(𝟐

𝑵

𝟒
+𝟏)

𝟔
= 𝑂(𝑁3𝑀)

𝑂(𝑁3𝑀)

In the call to foo,  i was passed for t =>  
use O(i2M), NOT O(t2M)

෍

𝑘=1

𝑁

𝑘2 =
𝑁(𝑁 + 1)(2𝑁 + 1)

6



Time complexity of nested loops – special cases solution

• Solve the innermost loop and use its time complexity in the calculation of the 
TC1iter () of the next outer loop and so on. Note that we solve t first, then k, then i.

for(i=1; i<=N; i++) 

for(k=1; k<=M; k=k*2) 

for(t=0; t<=i; t=t+3)

printf("C");      

for-t:  TC1iter(t) = O(1) independent
t: 0,3,6,9,… t = 3e,  3p=i => p = i/3 repetitions 
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i/3*O(1) = O(i)

for-k:  TC1iter(k) = O(i) independent
k: 1,2,4,8,… k = 2x, 2p=M => p = log2M repetitions log2M*O(i) = O(i*log2M)

for-i:  TC1iter(i) = O(i*log2M)  Dependent
change of variable NOT needed i: 1 to N

σ𝑖=1
𝑁 𝑂(𝑖 log2𝑀) = log2𝑀 σ𝑖=1

𝑁 𝑖 = log2𝑀
𝑁(𝑁+1)

2
= 𝑂(𝑁2 log2𝑀)

𝑂(𝑁2 log2𝑀)

If the constant for the dominant term was needed, we would keep the constants for all the dominant terms that have a 
constant: i/3 and N2/2 => the constant for all the code: 1/6 (this excludes the constant coming from the detailed count)

Assume i++ is replaced with i=i*2 .
What is the TC for the entire code?



Time Complexity of Sequential Loops 

// Write the Θ (Theta) time complexity

for (i=left; i<=right; i++) 

printf("%d, ", A[i]);     

for (i=0; i<p; i++) {        

for (k=0; k<r; k++)

printf("B");

}
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The actual size of the data being processed by the first loop is right-left+1. 

In applications (e.g. binary search or merge sort) this quantity often 
results in a fraction (e.g. half) of the amount of data in the previous 
iteration. 

Θ(M) 
where M = right-left+1

Θ(pr) 

Θ(M+pr) 
where M = right-left+1

If multiple variable appear in the time complexity, there may be more 
than one dominant term.

Example 1 the time complexity of the above code

Example 2: 27n4m + 6n3 + 7nm2 + 100 = Θ ( n4m + nm2 )



Insertion Sort Time Complexity
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‘Total’ instructions in worst case:  
T(N) = (N-1) + (N-2) + … 2 + 1 = 

= [N * (N-1)]/2 -> O(N2) 
Note that the N2 came from the summation, NOT because 
‘there is an N in the inner loop’ (NOT because N * N).

i
Inner loop time complexity:

Best :            Worst:         Average:
1                  i   i/2

1 1 1 1

2 1 2 2/2

… …

N-2 1 N-2 (N-2)/2

N-1 1 N-1 (N-1)/2

Total (N-1) [N * (N-1)]/2 [N * (N-1)]/4 

Order of 
magnitude

O(N) O(N2) O(N2)

Data that 
produces it.

Sorted Sorted in 
reverse order

Random data => O(N2)
O will be explained in detail later. It says that 
the algorithm take at most order of N2. 

See the Khan Academy for a discussion on 
the use of  O(N2):
https://www.khanacademy.org/computing/c
omputer-science/algorithms/insertion-
sort/a/insertion-sort

Insertion sort is adaptive

void insertion_sort(int A[],int N){

int i,k,key;

for (i=1; i<N; i++)

key = A[i];

// insert A[i] in the

// sorted sequence A[0…i-1]

k = i-1;

while (k>=0) and (A[k]>key)

A[k+1] = A[k];

k = k–1;

}

A[k+1] = key;

}

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/insertion-sort


Time complexity of nested loops – keep multiplication constant for dominant term

• Solve the innermost loop and use its time complexity in the calculation of the TC1iter () of the next outer loop and so on. Note that we 
solve t first, then k, then i.

for(i=1; i<=N; i++) 

for(k=1; k<=M; k=k*2) 

for(t=0; t<=i; t=t+5)

printf("C");      

for-t:  TC1iter(t) = 3 instructions (from: t<=i, printf("C"); t=t+5 ) 
independent
t: 0,5,10,15,… t = 5e,  5p=i => p = i/5 repetitions 
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i/5*3= O(3i/5)

for-k:  TC1iter(k) = O(3i/5) independent
k: 1,2,4,8,… k = 2x, 2p=M => p = log2M repetitions log2M*O(3i/5) = O( (3/5)*i*log2M)

for-i:  TC1iter(i) = O((3/5)*i*log2M)  Dependent
change of variable NOT needed i: 1 to N

σ𝑖=1
𝑁 𝑂((

𝟑𝒊

𝟓
) log2𝑀) =

𝟑

𝟓
log2𝑀 σ𝑖=1

𝑁 𝑖 =
3

5
log2𝑀

𝑁(𝑁+1)

2
= 𝑂(

3

5

1

2
𝑁2 log2𝑀) 𝑂(

3

10
𝑁2 log2𝑀)

The multiplication constant for the dominant term is: 
3

10


