Extra topic , NOT required

Calculate exact number of iterations of a loop as a function of the variable(s) that control the loop

Formula for values of i and exact calculation of number of loop iterations – Example 1

```
for (i=0; i<=N; i=i+3)
    printf("A");</pre>
```

```
i takes values: 0,3,6,9,12,.... \leq N
```

We notice that these are consecutive multiples of 3 so we will explicitly show that by writing i as a function of another variable:

i = 3*e

Where e takes values: 0,1,2,3,...,p

Here we use p to refer to that last multiple of 3 that is $\leq N$.

The loop executes (the condition is true) for all i = 3e where e takes values: $0,1,2,3,...,p \Rightarrow 1+p$ total values (because of the 0) => the loop iterates 1+p times. (A)

Next we will compute the exact formula for p:

Because of how we chose p we have: $3p \le N$ but p is an integer and largest with this property => $p = \left|\frac{N}{2}\right|$ (B)

From (A) and (B) it follows that the loop executes $1 + p = 1 + \lfloor \frac{N}{3} \rfloor$ times =>

The loop executes exactly: $1 + \left| \frac{N}{2} \right|$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: 0,1,2,3,4,15,17

Practice: how would you solve: for (i=3; i<=N; i=i+3) printf("A");</pre>

е	i=3e
0	0
1	3
2	6
3	9
е	3e
р	$3p$ $(i_{last} = 3p, i_{last} \le N$ $3p \le N =>$ $p = \lfloor N/3 \rfloor$

Formula for values of i and exact calculation of number of loop iterations – Example 1

for (i=2; i<=N; i=i+3)
 printf("A");</pre>

i takes values: $2,5,8,11,14,.... \leq N$

We notice that these are consecutive multiples of 3 with an offset of 2. We will explicitly show that by writing i as a function of another variable:

i = 2+(3*e)

Where e takes values: 0,1,2,3,....,p

Here we use p to refer to that last value 2+3p that is $\leq N$.

The loop executes (the condition is true) for all i = 2+3e where e takes values: 0,1,2,3,...,p => 1+p total values (because of the 0) => the loop iterates 1+p times. (A)

Next we will compute the exact value of p: 2+3p \leq N => 3p \leq (N-2) => p \leq (N-2)/3, but p is an integer and largest with this property => p = $\left|\frac{N-2}{3}\right|$ (B)

FINAL ANSWER form (A) and (B): The loop executes exactly: $1 + \left| \frac{N-2}{3} \right|$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: **2,3,4,5,6** (Note that you start with the smallest value of N for which the loop iterates at least one time: 2. You do not use 0 or 1 for N in this verification.)

е	i=2+3e
0	2
1	5
2	8
3	11
е	i = 2+3e
р	i _{last} <=N (i _{last} =2+3p)

Formula for values of i and exact calculation of number of loop iterations – Example 3

for (i=1; i<=N; i=i*5)	е	i=5 ^e
<pre>printf("A");</pre>	0	1
i takes values: 1,5,25,125, ,<=N We notice that these are consecutive multiples powers of 5 so we will explicitly show that by writing i as a		5
function of another variable: $i = 5^{e}$	2	25
Where e takes values: $0,1,2,3,,p$ Here we use p to refer to that largest value 5^p that is $\leq N$. The loop executes (the condition is true) for all i = 5^e where e takes values: $0,1,2,3,,p => 1+p$ total values (because of the 0) => the loop iterates $1+p$ times. (A)		125
		i=5 ^e
Because of how we picked p we have: $5^p \le N$, where p is an integer and largest with this property.		
Take \log_5 on both sides $\Rightarrow p \le log_5 N \Rightarrow p = [log_5 N]$ (B)	р	i _{last} <=N
From (A) and (B) it follows that the loop executes $1 + p = 1 + \lfloor \log_5 N \rfloor$ times =>		(i _{last} =5 ^p) =>

ANSWER: The loop executes exactly: $1 + \lfloor \log_5 N \rfloor$ times.

As a verification step you should check that the formula does give the exact number of loop iterations for a few values of N: **1,5,25,26,29,30**

 $p = \lfloor \log_5 N \rfloor$