Growth of functions

CSE 3318 – Algorithms and Data Structures
Alexandra Stefan

Based on presentations by Vassilis Athitsos and Bob Weems

University of Texas at Arlington

Math Background & book reference

- Limits
 - From the Limits cheat sheet see:
 - Properties,
 - Basic limit evaluations at $\pm \infty$ (focus on the +),
 - Polynomials at infinity (in Evaluation techniques)
 - L'Hopital's rule on wikipedia
- Derivatives
 - needed to Apply L'Hopital's rule
 - From the Derivatives cheat sheet see:
 - · "Basic Properties and Formulas" and
 - "Common Derivatives" (especially for: polynomial, logarithmic and exponential functions)
- Logarithm properties
 - See the class cheat sheet
- Cheat sheets and other useful links are on the <u>Slides and Resources webpage</u>.
 - Math cheat sheets and links: <u>Integrals</u>, <u>Derivatives</u>, <u>Limits</u> <u>Algebraic properties of equality</u>, <u>L'Hospital's rule on wikipedia</u>.
- Book: Chapter 3.2 has a useful math review

and if $\lim_{n\to\infty} \frac{f'(n)}{g'(n)}$ is a constant or $\pm\infty$

Then
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

L'Hopital rule:

Book

- Read chapter 3
 - Including 3.2 which has useful math review

Motivation

Understand the formal meaning of Θ , Ω , Θ , ω , σ .

Be able to understand (read and calculate) Big-Oh notation. E.g.

- Alg 1 is $O(N^2)$
- Alg 2 is Θ(NlgN)
- Alg 3 is $\Omega(N)$

Function plots

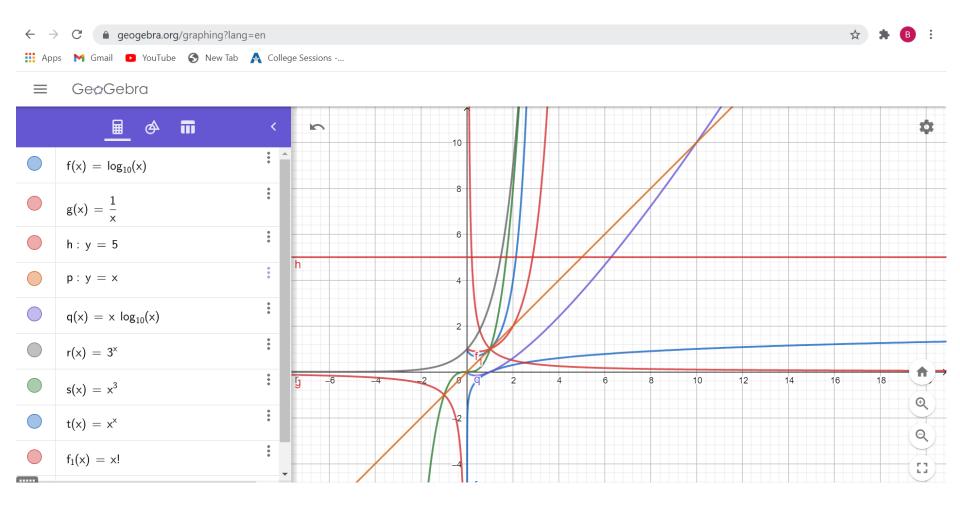


Image from Biruk Kebede

Asymptotic Bounds Notation

- Theta is called an asymptotic tight bound
- Goal: we want to express lower and upper bounds as well. E.g.:
 - Selection sort will take time <u>strictly</u> proportional to $n^2 \in \Theta(n^2)$
 - Insertion sort will take time <u>at most</u> proportional $n^2 \in O(n^2)$
 - Use big-Oh for upper bounding complex functions of n.
 - Note that we can still say that the worst case for insertion sort is $\Theta(n^2)$.
 - Any sorting algorithm will take time <u>at least</u> proportional to n. $\in \Omega(n)$
- Math functions that are:
 - $\Theta(n^2)$:
 - $O(n^2)$:
 - $-\Omega(n^2)$:

Abuse notation: f(n) = O(g(n))instead of: $f(n) \in O(g(n))$

```
Informal definition:

f(n) grows 'proportional'

to g(n) if:

\lim_{n\to\infty} \frac{f(n)}{g(n)} = c \neq 0
(c is a non-zero constant)

= .... \Theta tight bound

\leq .... \Theta upper bound

(big-Oh – bigger)
```

 $\geq \dots \Omega$ lower bound

Asymptotic Bounds and Notation (CLRS

chapter 3)

•
$$f(n) = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \mathbf{c} \neq \mathbf{0}$$
 (limit is a non-zero constant)

- -g(n) is an asymptotic **tight** bound for f(n).
- $f(n) = \Theta(g(n)) \Leftrightarrow$ there exist positive constants c_0 , c_1 and n_0 such that $c_0 g(n) \le f(n) \le c_1 g(n) \forall n \ge n_0$.
- $f(n) = O(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ or c (limit is a constant)
 - -g(n) is an asymptotic upper bound for f(n).
 - f(n) = O(g(n)) ⇔ there exist positive constants c_0 and n_0 such that $f(n) \le c_0 g(n)$, for all $n \ge n_0$.

•
$$f(N) = \Omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \text{ or } c$$

- -g(n) is an asymptotic **lower** bound for f(n).
- $-f(N) = \Omega(g(n)) \Leftrightarrow$ there exist positive constants c_0 and n_0 such that $c_0 g(n) \leq f(n)$ for all $n \geq n_0$.
- Typically, f(n) is the running time of an algorithm. This can be a complicated function.
- We try to find a g(n) that is **simple** (e.g. n^2), and such that f(n) = O(g(n)). E.g. $7n^2+10n+26 = O(n^2)$

Asymptotic Bounds and Notation (CLRS chapter 3)

"little-oh": o

- Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \mathbf{0}$, then $f(n) \in o(g(n))$
- f(n) is o(g(n)) if for any positive constant c_0 , there exists n_0 s.t.: $f(n) < c_0 g(n)$ for all $n \ge n_0$.
- g(N) is an asymptotic upper bound for f(N) (but NOT tight).
- E.g.: $n = o(n^2)$, n = o(nlgn), $n^2 = o(n^4)$,...

"little-omega": ω

- Theorem: if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $f(n) \in \omega(g(n))$
- f(N) is $\omega(g(n))$ if for any positive constant c_0 , there exists n_0 s. t.: $c_0 g(n) < f(n)$ for all $n \ge n_0$.
- g(n) is an asymptotic lower bound for f(n) (but NOT tight).
- E.g.: $n^2 = \omega(n)$, $n = \omega(n)$, $n^3 = \omega(n^2)$,...

Theta vs Big-Oh

The Theta notation is more strict than the Big-Oh notation:

```
- n^2 = O(n^3) is true
```

$$-n^2 = \Theta(n^3)$$
 is false

Properties of O, Ω and Θ

1.
$$f(n) = O(g(n)) => g(n) = \Omega(f(n))$$

2.
$$f(n) = \Omega(g(n)) \Rightarrow g(n) = O(f(n))$$

3.
$$f(n) = \mathbf{\Theta}(g(n)) => g(n) = \mathbf{\Theta}(f(n))$$

4. If
$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n)) => f(n) = \Theta(g(n))$

5. If
$$f(n) = \Theta(g(n)) = f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

Transitivity (proved in future slides):

6. If
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$, then $f(n) = O(h(n))$.

7. If
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n))$, then $f(n) = \Omega(h(n))$.

Simplifying Big-Oh Notation

- Let $f(n) = 35n^2 + 41n + lg(n) + 1532$.
- We say that $f(n) = O(n^2)$.
- Also correct, but too detailed (do not use them):
 - $f(n) = O(n^2 + n)$
 - $f(n) = O(35n^2 + 41n + lg(n) + 1532).$

Polynomial functions

• If f(n) is a polynomial function, then it is Θ of the dominant term.

```
• E.g. f(n) = 15n^3 + 7n^2 + 3n + 20,

find g(n) s.t. f(n) = \Theta(g(n)):

– find the dominant term: 15n^3

– lgnore the constant, left with: n^3

– => g(n) = n^3

– => f(n) = \Theta(n^3)
```

You cannot use the dominant term method if f(n) is a summation that has a number of terms that depends on n.

E.g.:
$$f(n) = n^2 + (n-1)^2 + ... + 2^2 + 1$$

See Summations for techniques for solving these.

Big-Oh Hierarchy

- $1 = O(\lg(n))$
- lg(n) = O(n)
- $n = O(n^2)$
- If $0 \le c \le d$, then $n^c = O(n^d)$.
 - Higher-order polynomials always get larger than lower-order polynomials, eventually.
- For any d, if c > 1, $n^d = o(c^n)$. (e.g. $n^{100} = o(2^n)$)
 - Exponential functions always get larger than polynomial functions, eventually.
- You can use these facts in your assignments.
- You can apply transitivity to derive other facts, e.g., that $lg(n) = O(n^2)$.

1/n, 1, lgn, n^{ε} , \sqrt{n} , n nlgn, n^2 , n^3 , n^d , c^n , n!, n^n (where $0 < \varepsilon < 0.5$)

n!

• Compare the following functions (in terms of o,ω) n!, 2^n , n^n

We can upper and lower bound n!

$$n! = o(n^n)$$
 n^n is a strictly upper bound for $n!$ $n! = \omega(2^n)$ 2^n is a strictly lower bound for $n!$

- Extra material:
 - We have a Θ bound on lg(n!):

$$\lg(n!) = \lg 1 + \lg 2 + \lg 3 + \dots + \lg(n-1) + \lg n = \Theta(n \lg n)$$

- But not on n!: $n! \neq \Theta(n^n)$
- To understand why, see this case, consider:

$$\lg(n^2) = \Theta(\lg(n))$$
 but $n^2 \neq \Theta(n)$

Useful logarithm properties

- $c^{lg(n)} = n^{lg(c)}$
 - Proof: apply lg on both sides and you get two equal terms:

$$lg(c^{lg(n)}) = lg(n^{lg(c)}) = >$$

$$lg(n) * lg(c) = lg(n) * lg(c)$$

- This equality helps identify "false exponentials". E.g. $3^{lg(n)}$ may look like an exponential growth, but is really polynomial: $n^{lg(3)}$.
- Can we also say that $c^n = n^c$?
 - -NO!

Proofs using the c definition: O

- Let $f(n) = 35n^2 + 41n + lg(n) + 1532$. Show (using the definition) that $f(n) = O(n^2)$.
- Proof:

Want to find n_0 and c_0 s.t., for all $n \ge n_0$: $f(n) \le c_0 n^2$.

Upperbound each term in the f(n) expression.

Version 1:

- Pick c_0 large enough to cover the coefficients of all the terms:

$$f(n) = 35n^2 + 41n + lg(n) + 1532 \le$$

 $\le 35n^2 + 41n^2 + n^2 + 1532n^2 = 1609n^2$
=> use c₀ = 1609 and n₀ = 1

Version 2:

Upper bound each term by n² for large n (e.g. n ≤ 1532)

$$f(n) = 35n^2 + 41n + lg(n) + 1532$$

 $\leq 35n^2 + n^2 + n^2 + n^2 = 38n^2$ for all $n \geq 1536$
=> $f(n) = 35n^2 + 41n + lg(n) + 1532 \leq 38n^2$, for all $n \geq 1536$ (here $c_0 = 38$, $n_0 = 1536$)

Proofs using the c definition: Ω , Θ

• Let $f(n) = 35n^2 + 41n + lg(n) + 1532$.

```
• Proof that f(n) = \Omega(n^2):

Want to find n_1 and c_1 s.t., for all n \ge n_1: f(n) \ge c_1 n^2.

- Use: c_1 = 1, n_1 = 1

f(n) = 35n^2 + 41n + lg(n) + 1532 \ge n^2, for all n \ge 1
```

• Proof that $f(n) = O(n^2)$:

Version 1: use property 4, page 10: We have proved $f(n) = O(n^2)$ and $f(n) = \Omega(n^2)$, therefore $f(n) = \Theta(n^2)$ holds

```
Version 2: We found c_0 = 38, n_0 = 1536 and c_1 = 1, n_1 = 1 s.t.: f(n) = 35n^2 + 41n + lg(n) + 1532 \le 38n^2, for all n \ge 1536 f(n) = 35n^2 + 41n + lg(n) + 1532 \ge n^2, for all n \ge 1 => n^2 \le f(n) \le 38n^2, for all n \ge 1536 => f(n) = \Theta(n^2)
```

Using Limits: Example 1

- Suppose that we are given this running time: $f(n) = 35n^2 + 41n + lg(n) + 1532$.
- Use the limits theorem to show that $f(n) = O(n^2)$.

Summary

- Definitions
- Properties: transitivity, reflexivity, ...
- Using limits
- Big-Oh hierarchy
- Example problems
- Asymptotic notation for two parameters
- $a^{\log_b(n)} = n^{\log_b(a)}$ $(a^n \neq n^a)$ (note \log_b in the exponent)

EXTRA NOT REQUIRED

Example Problem 1

- Is $n = O(\sin(n) n^2)$?
- Answer:

Example Problem 2

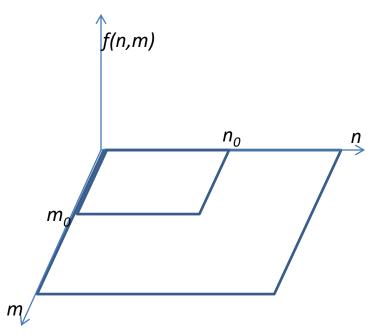
- Show that max(f(n), g(n)) is $\Theta(f(n) + g(n))$
 - Show O:

– Show Ω :

Asymptotic notation for two parameters (CLRS)

f(n,m) is O(g(n,m)) if there exist constants c_0 , n_0 and m_0 such that:

 $f(n,m) \le c_0 g(n,m)$ for all pairs (n,m) s.t. either $n \ge n_0$ or $m \ge m_0$



Using Limits

- if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ is a **non-zero** constant, then f(n)=____(g(n)).
 - In this definition, both zero and infinity are excluded.
 - In this case we can also say that $g(n) = \Theta(f(n))$. This can easily be proved using the limit or the reflexivity property of Θ.
- if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ is a constant, then $f(n) = \underline{\hspace{1cm}} (g(n))$.
 - "constant" includes zero, but cannot be infinity.
- if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$ then $f(n) = \underline{\qquad} (g(n))$.
 - g(n) grows much faster than f(n)
- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then $f(n) = \underline{\hspace{1cm}} (g(n))$.
 - "Constant" includes zero, but cannot be infinity.

Using Limits

- if $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ is a **non-zero** constant, then $f(n)=\Theta(g(n))$.
 - In this definition, both zero and infinity are excluded.
 - In this case we can also say that $g(n) = \Theta(f(n))$. This can easily be proved using the limit or the reflexivity property of Θ.
- if $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ is a constant, then $f(n) = \Omega(g(n))$.
 - "constant" includes zero, but cannot be infinity.
- if $\lim_{n\to\infty}\frac{g(n)}{f(n)}=\infty$ then f(n)=o(g(n)).
 - g(n) grows much faster than f(n)
- if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ is a constant, then f(n) = O(g(n)).
 - "Constant" includes zero, but cannot be infinity.

Asymptotic Notation in Expressions (if needed)

In the recurrence formulas and proofs, you may see these notations (see CLRS, page 49):

- $f(n) = 2n^2 + \Theta(n)$
 - There is a function h(n) in $\Theta(n)$ s.t. $f(n) = 2n^2 + h(n)$
- $-2n^2+\Theta(n)=\Theta(n^2).$
 - For any function h(n) in $\Theta(n)$, there is a function g(n) in $\Theta(n^2)$ s.t. $2n^2 + h(n) = g(n)$.
 - For any function h(n) in $\Theta(n)$, $2n^2 + h(n)$ is in $\Theta(n^2)$.

Big-Oh Transitivity - Proof

• If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Proof:

We want to find c_3 and n_3 s. t. $f(n) \le c_3 h(n)$, for all $n \ge n_3$.

We know:

$$f(n) = O(g(n))$$
 => there exist c_1 , n_1 , s.t. $f(n) \le c_1 g(n)$, for all $n \ge n_1$ $g(n) = O(h(n))$ => there exist c_2 , n_2 , s.t. $g(n) \le c_2 h(n)$, for all $n \ge n_2$

$$\Rightarrow f(n) \leq c_1 g(n) \leq c_1 c_2 h(n), \text{ for all } n \geq \max(n_1, n_2)$$

$$\Rightarrow$$
 Use: $c = c_1 * c_2$, and $n \ge max(n_1, n_2)$

Extra Using Substitutions

• If $\lim_{x\to\infty} h(x) = \infty$, and h(x) is monotonically increasing then:

$$f(\mathbf{x}) = O(g(\mathbf{x})) \Rightarrow f(h(\mathbf{x})) = O(g(h(\mathbf{x}))).$$
 (This can be proved)

- How do we use that?
- For example, prove that:

$$(\lg n)^{10} = O(n)$$

 $(for : n^2 (\lg n)^{10} = O(n^3))$

Proof: Use substitution:
$$h(n) = \lg(n)$$

and: $y^{10} = O(2^y)$
 $(y = h(n))$