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Math background - Review

• Series (the terms) and their summations:

– Geometric 

– Arithmetic

– (This information is in the following slides and the class cheat sheet)

• Integrals
– From the Integrals cheat sheet see:

• The fundamental theorem of calculus Part II:

• Common integrals

• Cheat sheets and other useful links are on the Slides and Resources 
webpage.
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Book Reference

• Book (CLRS) references for this lecture: Apendix A, especially 

– pages 1145-1147, 

– page 1150 (bounding the terms),

– Pages 1154-1156 (approximation by integrals)
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Overview

• Summations
– Summation of arithmetic series:

• Where a1 is the first term and d is the step.

– Summation of geometric series: σ𝑘=0
𝑛 𝑥𝑘

• 0 < 𝑥 < 1 , 𝛩(1)
• 𝑥 > 1 , 𝛩(𝑥𝑛)
• 𝑥 = 1 , 𝛩(𝑛)   (easy to check: 1+1+…+1)

– Approximation by integrals
– Induction 

• You suspect/guess that a summation S = 𝛩 𝑓 𝑁 and 
prove/verify it using induction. 
See Dr. Bob Weems, “Notes 3: Summations”, section 3.D.

– Very useful exercise in strengthening one’s math skills.
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Summations

• Summations are formulas of the sort:            

σ𝑘=0
𝑛 𝑓(𝑘)

• Used to solve recurrences and time complexity of 
loops
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Summation of Arithmetic Series

• Examples: 
– 1,5,9,13,17,21,…., 

• ‘Step’ between terms:    d = 4

• First term:    a1 = 1

– Note that 1,2,3,…,n is a special case where the step is +1.

– 3,13,23,33,43,….
• Step? First term (a1)?

• General formula:
– Here d is the step and a1 is the first term

• Summation: 

• Summation of consecutive terms:
• Do not confuse the summation of terms with the count of terms! (See a future slide)
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Summation of Geometric Series
0 < 𝑥 < 1

• Suppose that 𝟎 < 𝒙 < 𝟏:

• Finite summations: σ𝑘=0
𝑛 𝑥𝑘 =

𝑥𝑛+1−1

𝑥−1
=

1 − 𝑥𝑛+1

1 − 𝑥
= 𝛩 ? ?

– Infinite summations: σ𝑘=0
∞ 𝑥𝑘 =

1

1 − 𝑥

– Important to note: σ𝑘=0
𝑛 𝑥𝑘 ≤ σ𝑘=0

∞ 𝑥𝑘 =
1

1 − 𝑥

– Therefore, σ𝑘=0
𝑛 𝑥𝑘 = 𝛩 1 . Why?
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Summation of Geometric Series
0 < 𝑥 < 1

• Suppose that 𝟎 < 𝒙 < 𝟏:

• Finite summations: σ𝑘=0
𝑛 𝑥𝑘 =

1 − 𝑥𝑛+1

1 − 𝑥
= 𝛩 1

– Infinite summations: σ𝑘=0
∞ 𝑥𝑘 =

1

1 − 𝑥

– Important to note: σ𝑘=0
𝑛 𝑥𝑘 ≤ σ𝑘=0

∞ 𝑥𝑘 =
1

1 − 𝑥

– Therefore, σ𝑘=0
𝑛 𝑥𝑘 = 𝛩 1 . Why?

– Because 
1

1 − 𝑥
is independent of n.

– Strictly speaking we showed that it is O(1), but the sum is also ≠ 0 
and so it is Ω(1).
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Summation of Geometric Series
𝑥 ≥ 1

• 𝑥 > 1 The formula is the same, and can be rewritten as:

෍

𝑘=0

𝑛

𝑥𝑘 =
𝑥𝑛+1 − 1

𝑥 − 1

– Remember this formula!

– For example:

1 + 5 + 52 + 53 + … + 5𝑛 =
5𝑛+1 − 1

5 − 1
= 𝛩 5𝑛

5 is a constant and so:  5𝑛+1 = 5 ∗ 5𝑛 = 𝛩 5𝑛 (Exponential!)

• 𝑥 = 1 => 
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Approximation by Integrals 

׬
𝑚−1

𝑛
𝑓 𝑥 𝑑𝑥 ≤ σ𝑘=𝑚

𝑛 𝑓(𝑘) ׬ ≥
𝑚

𝑛+1
𝑓 𝑥 𝑑𝑥

when f(x) is a monotonically increasing function.

In most cases***, our end result will be:

σ𝑘=1
𝑛 𝑓(𝑘) = Θ(׬

0

𝑛
𝑓 𝑥 𝑑𝑥) when f(x) is monotonically increasing

*** For the problems we look at, you can adjust the borders since the 
differences should result in lower order terms (see the worked-out 
example). But always be prepared to check the correctness.
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Approximation by Integrals 

׬
𝑚−1

𝑛
𝑓 𝑥 𝑑𝑥 ≤ σ𝑘=𝑚

𝑛 𝑓(𝑘) ׬ ≥
𝑚

𝑛+1
𝑓 𝑥 𝑑𝑥

when f(x) is a monotonically increasing function.

׬
𝑚

𝑛+1
𝑓 𝑥 𝑑𝑥 ≤ σ𝑘=𝑚

𝑛 𝑓(𝑘) ׬ ≥
𝑚−1

𝑛
𝑓 𝑥 𝑑𝑥

when f(x) is a monotonically decreasing function.

Informally  you can use 
σ𝑘=𝑚
𝑛 𝑓(𝑘) = 𝛩 (𝐹 𝑛 − 𝐹(𝑚))   where F is the antiderivative of f
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Approximation by Integrals - Theory
׬
𝑚−1

𝑛
𝑓 𝑥 𝑑𝑥 ≤  σ𝑘=𝑚

𝑛 𝑓(𝑘) ׬ ≥
𝑚

𝑛+1
𝑓 𝑥 𝑑𝑥

• Suppose that f(x) is a monotonically increasing function:
– This means that 𝑥 ≤ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦).

• Then, we can approximate summation σ𝑘=𝑚
𝑛 𝑓(𝑘) using integral 

׬
𝑚

𝑛+1
𝑓 𝑥 𝑑𝑥.

• Why? Because ׬
𝑘−1

𝑘
𝑓 𝑥 𝑑𝑥 ≤ 𝑓(𝑘) ׬ ≥

𝑘

𝑘+1
𝑓 𝑥 𝑑𝑥 .

– Proof for: 𝑓(𝑘) 𝑘׬ ≥
𝑘+1

𝑓 𝑥 𝑑𝑥

For every 𝑥 in the interval [𝑘, 𝑘 + 1], 𝑥 ≥ 𝑘. Since 𝑓(𝑥) is increasing, if 𝑥 ≥ 𝑘 then 
𝑓 𝑥 ≥ 𝑓(𝑘). (Remember that the integral is the sum of 𝑓 𝑥 on the interval [𝑘, 𝑘 +
1]of size 1. )

– Similar proof for ׬
𝑘−1

𝑘
𝑓 𝑥 𝑑𝑥 ≤ 𝑓(𝑘)
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Problem: approximate T(n) = σ𝒌=𝟏
𝒏 𝒌𝟐 using an integral:

Answer:  

Note that T(n) is a sum of 𝒌𝟐 terms. We will use   𝑓(𝑥) = 𝑥2 to 
approximate this summation.

𝑓(𝑥) = 𝑥2 is a monotonically increasing function.

O: T(n) = σ𝑘=1
𝑛 𝑘2 ≤ 1׬

𝑛+1
𝑥2𝑑𝑥 =

𝑛+1 3+𝑐−13−𝑐

3
=

𝑛3+2𝑛2+2𝑛+1 −1

3
=

𝑂(𝑛3)

Ω ∶ T(n) = σ𝑘=1
𝑛 𝑘2 ≥ 0׬

𝑛
𝑥2𝑑𝑥 =

𝑛3+𝑐−03−𝑐

3
=

𝑛3

3
= Ω(𝑛3)

 𝑓 𝑛 = 𝛩(𝑛3)

Informal solution: σ𝑘=1
𝑛 𝑓(𝑘) = 𝛩(F(n)-F(1)). => 

σ𝑘=1
𝑛 𝑘2= 𝛩(

𝑛3

3
+ 𝑐 − (

13

3
+ 𝑐)) = 𝛩(

𝑛3−1

3
) = 𝛩(𝑛3)

Approximation by Integrals - Example

𝑚−1׬

𝑛
𝑓 𝑥 𝑑𝑥 ≤  σ𝑘=𝑚

𝑛 𝑓(𝑘) 𝑚׬ ≥
𝑛+1

𝑓 𝑥 𝑑𝑥
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Worksheet

1) Find Θ for
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Hint: pay attention to the borders for b). 
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2) Given summation: 1 + 25 + 35 + … + N5

Can you solve this in terms of Θ, Ω or O ?

3) The summation we left unsolved before is easy now: 

σ𝑖=1
𝑁 log2 𝑖 = σ𝑖=1

𝑁 ln 𝑖

ln 2
=

1

ln 2
σ𝑖=1
𝑁 ln 𝑖 =

1

ln 2
Θ 𝐹 𝑁 − 𝐹 1 =

Θ 𝑁𝑙𝑛 𝑁 + 𝑁 + 𝑐 − 1 ∗ ln 1 + 1 + 𝑐 = Θ 𝑁𝑙𝑛 𝑁 =

Θ 𝑁
log2 𝑁

log2 𝑒
= Θ 𝑁 log2𝑁



Extra
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• Do not confuse the summation of terms with the count of terms!

• Progression: 1,2,3,…n
• Summation of terms: 1+2+…+n = n(n+1)/2=Θ(n2)
• Count of terms: 1,2,3,…,n => n terms => Θ(n)

• Progression:1, 2, 4, …, 2i, ...2n

• Summation: 
• Count of terms:  n+1

• Progression:1, 2, 4, …, 2i, ...2p≤n  (last power of 2 less or equal to n)
• Summation: 
• Count of terms:  1+lgn     (more precisely: 1+floor(lgn))
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