
C review
Single Linked Lists
Dynamic Memory

Alexandra Stefan

19/8/2023

Outline
• Brief C discussion: malloc/calloc/free

• Static vs Dynamically allocated memory

• Drawing nodes and pointers

• “Cheat sheet” for linked lists

• Code - solution and drawing for:
• Create a list from an array (array_2_list(…)), delete an entire list

(destroy_list(…))
• Insert/dele a node after a node and from a list
• Swap two consecutive nodes in a list

• Array of linked list – example and drawing

• Steps for developing the solution and the code for problems that involve loops

• Steps for array_2_list(…)

• Program state at different times for array_2_list(…)

• Steps for destroy_list(…)

• Worksheets for the problems solved above

2

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Dynamic memory management: malloc()/calloc()/realloc() and free()
• References:

• https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
• https://www.cplusplus.com/reference/cstdlib/malloc/

• malloc() – requests a chunk of memory of a size (in bytes) given as an
argument. Returns a pointer (the memory address of the first byte in that
chunk) . It returns NULL if failed (if it could not reserve the required amount
of memory). This memory must be released with free().

• calloc() – similar and initializes all bits to 0. Takes number of items and size
of an item. It is useful when requesting memory for several items of the
same type. E.g. to store an array. This memory must be released with free().

• realloc() resizes the memory. It returns the pointer to the new memory and
frees the original. This memory must be released with free().

• free() – releases the memory allocated by any one of the allocating method
above when given the pointer returned by that method.

• Number of executed CALLS to free() must be EQUAL to the number of
executed CALLS to malloc() and calloc(). Otherwise memory leaks occurs.

3

E.g.
nodePT L=NULL;

L = (nodePT)malloc(sizeof(struct node));

free(L);

Assume:
typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

https://www.tutorialspoint.com/c_standard_library/c_function_malloc.htm
https://www.cplusplus.com/reference/cstdlib/malloc/
https://www.cplusplus.com/reference/cstdlib/calloc/
https://www.cplusplus.com/reference/cstdlib/free/

Static (S) memory vs Dynamic (D) memory
• Allocated when?

• S - Allocated before the program starts executing.

• D - Allocated and freed during the program execution. Can change size.

• See "Difference between Static and Dynamic Memory Allocation in C"

• Created how?
• S - With variable declaration. E.g. nodePT L; (or int n=10;)

• D - With malloc()/calloc()/realloc(). E.g. L=malloc(sizeof(struct node);

• Freed when?
• S - When the function call finished (for variables local to that function), or when the

program finishes (for global and static variables)

• D - when free() is called for that pointer.

• Named?
• S – Yes: Variables (created with variable declaration) are named memory boxes. Using

their name we read, or modify the content of that memory box. E.g.
printf("%d",N); N=20; int arr[20];

• D – No: Dynamic memory boxes (chunks) are UNNAMED. NO variable NAME is associated
with them at creation (and thus have no name). Can be accessed from their pointer. E.g. .
printf("%d",*int_ptr); printf("%d",L->data); L->next=NULL;

• Being aware of this difference may avoid confusion.

4

9 abcd

L (8B)

10ab

data next

N (4B)

10

https://www.geeksforgeeks.org/difference-between-static-and-dynamic-memory-allocation-in-c/#:~:text=Static%20Memory%20Allocation%20is%20done,is%20done%20during%20program%20execution.&text=In%20static%20memory%20allocation%2C%20once,memory%20size%20can%20be%20changed.

Static vs Dynamic memory - drawing

• Below the boxes (the memory) for A and B is static and for the node box it is
dynamic

• Also remember that when A=B the content of box labeled B is copied into box labeled A.

5Total memory used: 8B+8B+12B=28B

Cheat sheet for Linked Lists
• Dynamically allocated struct vs local pointer variable -

• DO not confuse the two! Use malloc/calloc to allocate space for a node and then use a POINTER
VARIABLE to hold the address of nodes and move through them (just as you use variable j to move
through numbers, say 0 to N)

• Must have one malloc/calloc call for every NODE needed.

• CALLS to malloc = CALLS to free

• To delete a node or insert a node, we must know the node that will be BEFORE it – (for
single-linked lists)

• Check that any pointer dereferenced is not NULL. (i.e. should never have “NULL->”)

• Test cases:
• L is NULL, L has only one node,
• Node being worked on is the first node or the last node (e.g. for deletion)

• When swapping, NAME the nodes to avoid overwriting a link

• DRAW the data. MAKE UP values for the memory addresses and any other data needed.

• LOOP to iterate through all the nodes in a list (assuming L points to the first actual node of
the list)

for(curr=L; curr!=NULL; curr=curr->next)

6

curr is the variable referencing every node (just like j holds numbers 0 to N)

curr = L // makes curr point to the first node by holding the mem address of that

node (like j=0)

curr!=NULL; // this is true when curr points to a valid node. When curr is the
last node, curr->next is NULL, thus curr=curr->next makes curr be NULL

curr = curr->next // makes curr point to the following node (by holding

now the address of that node)

9 abcd10ab

10ab

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {//TC=Θ(N), SC=Θ(1)

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

}
7

9 1 7 5

0 1 2 3

L data next

10ab abcd dabc 200c

nodePT array_2_list(int arr[], int N) Trace the
code execution. Color over and fill in each box as it is created and/or
updated

newPj lastP

arr

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Note: this code can be written even
simpler, but this version is very explicit and
can be applied to other scenarios.

N

a000
a000

nodePT new_node(int value_in) {

nodePT result =

malloc(sizeof (struct node));

result->data = value_in;

result->next = NULL;

return result;

}

nodePT array_2_list(int arr[], int N)

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = new_node(arr[0]);

lastP = L;

for (j = 1; j< N; j++) {

newP = new_node(arr[j]);

lastP->next = newP;

lastP = newP;

}

return L;

} 8

Same code, but use function new_node()to create a node.
Advantages:
1. The code is more readable.
2. The new_node() function can be used in other places.
3. If a change (improvement or bug fix) is done new_node(),

it is done only once. (No code duplication)

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Function array_2_list
Two implementations

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

}

For both functions: time: Θ(N), space: Θ(1)

Delete an entire list: nodePT destroy_list(nodePT L)

// Time complexity: Θ(N),

// where N is the size of the list

nodePT destroy_list(nodePT L) {

nodePT next, curr;

curr = L;

while (curr!=NULL) {

next = curr->next;

free(curr);

curr = next;

}

return NULL; // to update pointer in caller code

}

9

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

NULL

Insert a node after a given node – node operation

/* Inserts newP after the node "prev".

Note that this is works on nodes. It does not matter how a list is

represented. prev is just a node. */

void insert_node_after(nodePT prev, nodePT newP) {

if ((prev == NULL)||(newP==NULL)) {

printf("\n Cannot insert after a NULL node. No action

taken.");

} else {

newP->next = prev->next; //5

prev->next = newP; //6

}

}

10

3 dddd
6aaa

8acf 6aaa
20 ????

dddd

15

prev newP

8acf dddd

6aaa

5

X

6

6

3 NULL
6aaa

8acf 6aaa
20 ????

NULL

prev newP

8acf

6aaa

6

Case when prev->next is NULL works fine:
Because we never ACCESS (with ->) the
that address, but we only COPY that NULL
from one box into another

Insert in a list, L, after a given node (assumed from L) Θ(1)
/* Inserts in list L, a the new node newP, after the node prev.

If prev is NULL it means newP must be linked to the beginning of L

Uses the list representation (L points to the first node with data) */

nodePT insert_node(nodePT L, nodePT prev, nodePT newP){

if (prev == NULL) { // case 1: inserts at the beginning of the list L

newP->next = L; //2

return newP; //3

}

else { // case 2:

insert_node_after(prev, newP); //4 does not affect the list head

return L; //5

}

}

11

7 3 abcd
6aaa

.... 1

L

10ab

8acf 6aaa 20 abcd

15

prev newP

8acf10ab abcd 4ddd

6aaa

5

X

6

6

7 3 abcd 1

L

10ab

NULL 6aaa 20 10ab

15

prev newP

8acf10ab abcd 4ddd

6aaa

56Case 1:
prev==NULL
Returns 6aaa

Case 2
prev != NULL
Returns 1000

Q: Change the function to not return anything (remove line 5), and replace line 3 with L=newP .Will it work? Will it be
correct? What scenario will be best for testing that?

Delete a node after a given node – node operation Θ(1)
/* Delete the node after the node "prev".

Note that this is works on nodes. It does not matter how a list is

represented. prev is just a node.*/

void delete_node_after(nodePT prev) {

if (prev == NULL) {

printf("\n Cannot delete after a NULL node. No action taken.");

} else {

nodePT toDel = prev->next; // 3

if (toDel != NULL){ // 4

prev->next = toDel->next; // 5 this crashes if toDel is NULL

free(toDel); // 6

}

}

}

12

SOLUTON drawing:

...

prev toDel

30cd

9

50ab 30cd 8acf

50ab

Remove
this node

7 30cd
8acf

3 8acf.... 1

prev toDel

9

50ab 30cd 8acf

50ab

Remove
this node

4ddd

7 30cd 3 8acf

Delete in a list, L, after a given node (assumed from L) - Θ(1)
/* Deletes from list L, the node after prev. If prev is NULL it means that the first

node of L must be deleted. Uses the list representation: L points to the 1st node.*/

nodePT delete_node(nodePT L, nodePT prev){

if (prev == NULL) { // delete the first node from L

if (L==NULL) { return NULL; } // no node in the list. nothing to delete

else {// case 2: delete 1st node and return the address of the new 1st node

nodePT newFirst = L->next;

free(L);

return newFirst;

}

} else { // case 3

delete_node_after(prev); // does not affect the list head

return L;

}

}

13
3 1

L

10ab

prev

newFirst

7a7b

.... 9

50ab 30cd 8acf

50ab

Remove this node

cd00
10ab

2 3 1

L

10ab

prev

9

7a7b 30cd 8acf

NULL

Remove this node

cd00
10ab

8 7a7b

8

Case 2:
prev==NULL, L!=NULL
Returns 7a7b

Case 3:
prev!=NULL
Returns 10ab

To see the work see delete_node_after

7 30cd
8acf

Swap the next 2 nodes after node prev Θ(1)

HINT: When swapping, NAME the nodes to avoid overwriting a link. Below lines 8,9,10 can be executed in any
order. If not named, a specific order would be needed.

// Swaps 2 nodes after prev. If prev is NULL or not enough nodes, it does nothing.

void swap_2_after(nodePT prev){

if ((prev == NULL) || (prev->next == NULL) || (prev->next->next == NULL)) {

printf("\n prev is NULL or not enough nodes!\n");

return;

}

nodePT A = prev->next; // 1st node in the swap, code crashes if NULL

nodePT B = prev->next->next; // 2nd node in the swap, code crashes if NULL

nodePT C = B->next; //1st node after the nodes to be swapped (A, B). Ok if NULL

prev->next = B; //8

A->next = C; //9

B->next = A; //10

}

14

A

7a7b

.... 1

prev

7a7b 30cd
8acf

10ab

cd0010ab

8 7a7b
30cd

B

30cd

C

8acf

X

Line 8

2 30cd
8acf

3 8acf
717b

9XX

9

10

Array of linked lists –
simple example

/* assume new_node(), array_2_list(), and
print_list_horiz() are the ones from the
list implementation provided.

*/

typedef struct node * nodePT;

truct node {

int data;

struct node * next;

};

int arr[] = {5,1,8};

nodePT listArr[5]; //1

// size: 5*sizeof(memory address) = 5*8B=40B

// set every pointer/list to NULL

for(j=0; j<5; j++) { // 2

listArr[j]=NULL;

}

listArr[0] = new_node(5); //4

listArr[2] = array_2_list(arr, 3); //5

print_list_horiz(listArr[0]);

print_list_horiz(listArr[1]);

print_list_horiz(listArr[2]);

print_list_horiz(listArr[3]);
15

XXXX

XXXX

XXXX

XXXX

XXXX

listArr
created in
line 1

NULL

NULL

NULL

NULL

NULL

listArr
after loop
in line 2

Drawings of listArr at different
stages in the program.

07cc

NULL

abcd

NULL

NULL

listArr
after lines
4 and 5

5 dabc 8 NULL

abcd dabc 200c

1 200c

5 NULL

07cc

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Steps for developing an algorithm (and code) with a loop –
(similar to proof by induction)

• Any code that has a loop can only be correct if there is a specific property that the loop
preserves. More specifically, there is a relation between the current state of program DATA and
the iteration of that loop.

• 0. When developing code that involves loops, first draw a picture of the given data and the final
resulting data.

Then start form the data (the actual data and the variables that you will use to store and access
that data) and the relation between the data and the loop iteration.

• 1: loop - decide roughly what the loop does (overall and in one iteration)

• 2a: identify property - What is the expected program state before iteration j. (CLEARLY state
what each variable holds: each variable must have a clear meaning and must hold specific data
(related to processing the first (j-1) items/data).

• 2b: j -> (j+1) - assume the property holds before iteration j and prove/check it holds before
iteration (j+1), i.e. running the code iteration j, preserved that property .

After the current iteration, j, the variables will hold the same information but related to
processing the first j items.

• 3: solved in the end - check that when the loop finished, the problem is solved

• 4: fix start - check and fix so that the data has the property immediately before the FIRST
iteration starts. Most times, this needs fixing.

• PROGRAM STATE = all variables and their content and any other memory or data accessed by the program at THAT SPECIFIC TIME
in the execution.

• Below is an example for using this method to compute the sum of the elements in an array of int and

• to create a single linked list with data from an array of int
16

Steps for developing an algorithm (and code) with a loop –
for computing sum over the elements from an array

• int sumArr(int arr[], int N)

• 0. Draw a picture of the given data and the final resulting data.

Then start form the data and the relation between the data and the loop iteration.

• 1: loop (& vars) - decide roughly what the loop does (overall and in one iteration)
• At each iteration, add one more number from the array, for(j=0; j<N; j++) {// add arr[j]

• 2a: identify property - What is the expected program state before iteration j.
Before iteration j, sumVal will have the sum of the elements at indexes 0 to (j-1) ,
sumVal =sumVal+arr[j]. E.g. for before j=2, sumVal=10

• 2b: j -> (j+1) - assume the property holds before iteration j and prove/check it holds before iteration
(j+1), i.e. running the code iteration j, preserved that property .

in iteration for j=2 we do: sumVal=sumVal+arr[j] = 10+arr[2] = 10+7=17 => yes j->(j+1)

• 3: solved in the end - check that when the loop finished, the problem is solved

Yes, it stops when j is N, i.e. here when j is 4. By case 2 above now sumVal has the sum of elements
from indices 0 to N-1 (here indexes: 0,1,2,3) .

• 4: fix start - check and fix so that the data has the property immediately before the FIRST iteration
starts. Most of the times, this needs fixing.

before iteration for j =0 starts, what is sumVal? It should be 0 => sumVal = 0

17

9 1 7 5

0 1 2 3 N

4

sumVal

22

int sumArr(int arr[], int N) {
int j, int sumVal=0;

for(j=0; j<N j++) { sumVal=sumVal+arr[j]; }

return sumVal;

}

arr

c34d

Step 1 - Creating a linked list with data from an array of int

18

Given data:
array of int, arr and int N Drawing:

9 1 7 5

0 1 2 3

Data to be created:
Single linked list. Drawing: 9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

nodePT array_2_list(int arr[], int N)

Solve the problem using the relation between data and loop iteration

Step 1. What will control the loop? What do we loop over?
Ans: Add a node for one item in arr.

We will iterate over the array arr, using the index, j (
for(j=0;j<N;j++) {

// create a new node,
// write arr[j] as data in it, (and possibly NULL in next)
// add it to the end of the list

}

N

4

arr

a000

a000

19

Data to be created:
Single linked list. Drawing: 9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Solve the problem using the relation between data and loop iteration continued

Step 2a: What is the expected program state before iteration j (program state means what
value will the variables have).
a. Items at indexes 0 to (j-1) were processed, a node was created for each one of them and

they are in linked in a linked list in this order. The last node will have arr[j-1] as data. E.g.
before (j=2) have the nodes at addresses 10ab and abcd, and abcd has data 1.

b. What is next for the last node (abcd)? Should it be a valid memory address or NULL? I
choose NULL so that it is a correct last node in the list and it does not have what to point at

9 1 7 5

0 1 2 3

9 abcd 1 NULL

L

10ab

data next

10ab abcd

Program state (immediately
after j became 2):

Step 2a - Creating a linked list with data from an array of int

Given data:
array of int, arr and int N Drawing:

9 1 7 5

0 1 2 3 N

4

N

4

j

2

arr

a000

a000

arr

a000

a000

20

Data to be created:
Single linked list. Drawing: 9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Solve the problem using the relation between data and loop iteration continued.
Step 2b. j-> (j+1) Work done in one iteration (must preserve the state):
What should be done in the iteration when j=2?
a. Create a new node, store its address in a variable, say newP:

struct node * newP = malloc(sizeof(struct node)),
b. Write data in it: copy arr[j] in its data field, NULL in next

newP->data=arr[j]; newP->next=NULL

c. Link the new node at the end of the current list: set the next of the last node in the list
(abcd) to have the memory address of the new node. We just realized we need a name for that
last node, thus we need a (struct node *) variable. Say lastP of type struct node * .

lastP->next=newP.
d. Check that the data is good for the next iteration: Before iteration for index 3 (when j=3) is
my data as expected? No because lastP is still abcd, but now the last node is at address dabc
=> update lastP as lastP=newP;

9 abcd 1 dabc 7 NULL
newP

dabc

data next

10ab abcd dabc

L

10abj

2
lastP

abcd

Step 2b - Creating a linked list with data from an array of int

Given data:
array of int, arr and int N Drawing:

9 1 7 5

0 1 2 3 N

4

arr

a000

a000

Step 3 - Creating a linked list with data from an array of int

21

Solve the problem using the relation between data and loop iteration continued.

Step 3. solved in the end- Check the state at the end of the loop. Will the problem be solved?
After the iteration for the last index (j=3), do we have the entire list? – yes, it seems to be so,
and the last node points to NULL (indicate the end of the list) thanks to our choice for newP-
>next = NULL

Data to be created:
Single linked list. Drawing: 9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:
array of int, arr and int N Drawing:

9 1 7 5

0 1 2 3 N

4

arr

a000

a000

22

Solve the problem using the relation between data and loop iteration continued.

Step 4. Check the FIRST iteration of the loop. What data will it use? Will this be a special case?
Yes. It is a special case because:
a. The address of the first node must be copied in box L (the others are not written in L)
b. When creating the first node (for the number 9), there is NO other node in the list, thus

there is no lastP, thus the code in the loop may break.
 Treat this special case separate, NOT in the loop. This is just my personal choice => modify

the loop to start at index 1 , not 0 (for(j=1;j<N;j++)) (the other way is to create
a special case inside the loop for j==0. There are pros and cons to both options).

 Create a node, store its memory address in L :
nodePT L = malloc(sizeof(struct node)).
Write data in it: L->data = arr[0]; L->data = NULL . How will this node be

used by the loop? It is currently the last node in the list, thus make lastP point to it by
copying its address in lastP (lastP = L). Check what is expected of lastP? It is expected
that it point to NULL (i.e. next is NULL.) . It does!

9 1 7 5

0 1 2 3

L

10ab

data next

10ab
Program state:

9 NULL

lastP

10ab

Note that even if the array
had size 1, the list will be
correct (last node points to
NULL) (This is one possible
special case.)

Step 4 - Creating a linked list with data from an array of int

arr

a000
a000

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

}
23

9 1 7 5

0 1 2 3

L data next

10ab abcd dabc 200c

nodePT array_2_list(int arr[], int N) Trace the
code execution. Color over and fill in each box as it is created and/or
updated

newPj lastP

arr

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Note: this code can be written even
simpler, but this version is very explicit and
can be applied to other scenarios.

N

a000
a000

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

} 24

9 1 7 5

0 1 2 3

L

10ab

data next

10ab

9 NUL
newP

NULL

j

1 10ab

lastP

arr

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

N

4a000
a000

PROGRAM STATE (all data - all
memory used and its content)

Above is the program state just
before iteration for j=1 starts
(immediately after executing j=1)

This is in text form (to be used in
online exam)
arr=(a000; 9,1,7,5); N=(...; 4)
L=(…;10ab),
newP=(…;NULL), lastP=(…;10ab)
j=(…;1)
(10ab;9,NULL)

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

} 25

9 1 7 5

0 1 2 3

1 dabc 7 NULL

L

10ab

data next

10ab abcd dabc

9 abcd
newP

dabc

j

3 dabc

lastP

arr

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

N

4a000
a000

PROGRAM STATE (all program data)
just before iteration for j=3 starts
(immediately after j is updated to 3).
All the data shown is consistent with
what the program does (even the
NULL in dabc.

This is in text form (to be used in
online exam)
arr=(a000; 9,1,7,5); N=(...; 4)
L=(…;10ab),
newP=(…;dabc), lastP=(…;dabc)
j=(…;3)
(10ab;9,abcd)->(abcd; dabc)->
(dabc; NULL)

Delete an entire list

• Function signature: void delete(nodePT L);

• STEPS.
• 1: loop - decide roughly what the loop does (overall and in one iteration)

• 2a: identify property - What is the expected program state before iteration j.
(CLEARLY state what each variable holds: each variable must have a clear meaning
and must hold specific data (related to processing the first (j-1) data.

• 2b: j -> (j+1) - assume the property holds before iteration j and prove/check it
holds before iteration (j+1).

After the current iteration, j, the variables will hold the same information but
related to processing the first j data.

• 3: solved in the end- check that when the loop finished, the problem is solved

• 4: fix start - check and fix so that the data has the property right before the FIRST
iteration starts. Most times, this needs fixing.

26

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

10ab

Delete an entire list

• Function signature: void delete(nodePT L);

• STEPS.
• 1: loop - decide roughly what the loop does (overall and in one iteration)

Iterates over every node, and in one iteration it deletes one node. Use name curr
for every node, curr

work needed to delete and free curr

• 2a: identify property - What is the expected program state before iteration j. (CLEARLY
state what each variable holds: each variable must have a clear meaning and must hold
specific data (related to processing the first (j-1) data.
The first (j-1) nodes are deleted. Nodes before curr are deleted and freed

• 2b: j -> (j+1) - assume the property holds before iteration j and prove/check it holds
before iteration (j+1)
If free(curr), we lose the link to the next node (we do not know the number dabc) => need

another pointer variable to hold it => use name next . Order matters!!!!
next = curr->next; // line 21

free(curr); // line 22

curr = next; // line 23

27

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

NULL

1 dabc 5 NULL7 200c10ab

abcd dabc 200c

L

abcd

curr

XXXXXXdabc

next

10ab

Delete an entire list

• Function signature: void delete(nodePT L);

• STEPS.
• 3 : solved in the end - check that when the loop finished, the problem is solved

In the last iteration curr points to the last node, 200c, and it deletes in that iteration. L should be fixed to
NULL after the loop: L=NULL;
• 4: fix start - check and fix so that the data has the property right before the FIRST iteration starts. Most

times, this needs fixing.
The only variables used are curr and next.
curr should point to the first node: curr=L
The CONTENT of after is set before it is used, so it is ok.

curr = L;

L=NULL; // if at the end of a function, this can be skipped

while(curr!=NULL){

next = curr->next; // line 21

free(curr); // line 22

curr = next; // line 23

}

28

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

NULL

abcd

curr

dabc

next

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Delete an entire list

// Time complexity: Θ(N),

// where N is the size of the list

nodePT destroy_list(nodePT L) {

nodePT next, curr;

curr = L;

while (curr!=NULL) {

next = curr->next;

free(curr);

curr = next;

}

return NULL; // to update pointer in caller code

}

29

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

NULL

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

}
30

9 1 7 5

0 1 2 3

L data next

10ab abcd dabc 200c

nodePT array_2_list(int arr[], int N) Trace the
code execution. Color over and fill in each box as it is created and/or
updated

newPj lastP

arr

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Note: this code can be written even
simpler, but this version is very explicit and
can be applied to other scenarios.

N

a000
a000

// creates a single linked list from an array

nodePT array_2_list(int arr[], int N) {

int j;

nodePT lastP = NULL, newP=NULL;

nodePT L = malloc(sizeof(struct node));

L->data = arr[0];

L->next = NULL;

lastP = L;

for (j = 1; j<N; j++) {

newP = malloc(sizeof(struct node));

newP->data = arr[j];

newP->next = NULL;

lastP->next = newP;

lastP = newP;

}

return L;

}
31

nodePT array_2_list(int arr[], int N)

Trace the code execution. Draw the data.

Assume:

typedef struct node * nodePT;

struct node {

int data;

struct node * next;

};

Note: this code can be written even
simpler, but this version is very explicit and
can be applied to other scenarios.

Delete an entire list, L: nodePT destroy_list(nodePT L)

32

9 abcd 1 dabc 5 NULL7 200c

L

10ab

data next

10ab abcd dabc 200c

Given data:

Final data:
L

NULL

Insert a node after a given node – node operation

/* Inserts newP after the node "prev".

Note that this is works on nodes. It does not matter how a list is

represented. prev is just a node. */

void insert_node_after(nodePT prev, nodePT newP) {

if (((prev == NULL)||(newP==NULL)) {

printf("\n Cannot insert after a NULL node. No action

taken.");

} else {

newP->next = prev->next; //5

prev->next = newP; //6

}

}

33

3 dddd

8acf 6aaa 20 ????

15

prev newP

8acf dddd

6aaa

Does this code work well when
prev->next is NULL ?

3 NULL

8acf 6aaa 20 ????

prev newP

8acf

6aaa

Delete a node after a given node – node operation
/* Delete the node after the node "prev".

Note that this is works on nodes. It does not matter how a list is

represented. prev is just a node.*/

void delete_node_after(nodePT prev) {

if (prev == NULL) {

printf("\n Cannot delete after a NULL node. No action taken.");

} else {

nodePT toDel = prev->next; // 3

if (toDel != NULL){ // 4

prev->next = toDel->next; // 5 this crashes if toDel is NULL

free(toDel); // 6

}

}

}

34

.... 1

prev

9

50ab 30cd 8acf

50ab

Remove
this node

4ddd

7 30cd 3 8acf

Swap the next 2 nodes after node prev

HINT: When swapping, NAME the nodes to avoid overwriting a link. Below lines 8,9,10 can be executed in
any order. If not named, a specific order would be needed.

// Swaps 2 nodes after prev. If prev is NULL or not enough nodes, it does nothing.

void swap_2_after(nodePT prev){

35

.... 1

prev

7a7b 30cd
8acf

10ab

cd0010ab

8 7a7b 2 30cd 3 8acf 9

