
Stacks

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

19/27/2023

General Queues
• A queue (as a general concept) is a data type that stores a set of objects.

– Let Item be the type of each object.

• Operations that a queue supports are:

– void insert(Queue *q, Item x) - adds object x to set q. Want time complexity Θ(1)

– Item delete(Queue *q) - choose an object x, remove that object from q, and return it to
the calling function. Want time complexity Θ(1)

– Item peek(Queue q) - see what the object that would be deleted next is, but do not
remove it from the queue. Return a copy of it or a reference to it.

– bool is_empty(Queue q)

– bool is_full(Queue q)

– Queue create() - may take initial capacity as an argument

– void destroy (Queue *q)

– Queue join(Queue q1, Queue q2) - joins two queues

• Specialized queues (based on what item delete() removes)

– Last inserted -> Stack / Pushdown Stack / LIFO (Last In First Out)

– First inserted -> FIFO Queue (First In First Out)

– Item with the smallest/largest key (if each item contains a key) -> Priority Queue (Heap)

– Random item 2

Stack (Pushdown Stack)
Main operations:

• push - Puts an item "on top of the stack".

• pop - Removes the item from the top of the stack (the last item added).

Applications

• Function execution in computer programs:

– when a function is called, it enters the calling stack. The function that leaves the calling stack
is always the last one that entered (among functions still in the stack).

• Provide a non-recursive implementation for problems that need a recursive solution

• Reverse order (e.g. reverse string)

• Check if balanced parenthesis

• Applications where you need to retrace your steps (and possibly try a different action).
E.g. maze exploration, placing queens on a board. (For such problems it is often easier
to write a recursive solution than an iterative one.)

• Interpretation and evaluation of symbolic expressions:

– evaluate expressions like (5+2)*(12-3), or

– parse C code (as a first step in the compilation process).

• Search methods.

– traverse or search a graph

• Check leetcode – see what problems require a stack 3

Push / Pop – Work sheet

4
15 20 * 30

Continue with the other operations.

Empty
stack

push(15)

push(20)

pop()

push(30)

push(7)

push(25)

pop()

push(12)

pop()

pop()

Conventions:

- value: Push value on stack

- * : Pop from stack

15

20

*

30

7

25

*

12

*

*

O
rd

er o
f o

p
eratio

n
s

Push / Pop – Answers

5

push(15)

push(20)

pop()

push(30)

push(7)

push(25)

pop()

push(12)

pop()

pop()

15 15

20

15 15

30

15

30

7

15

30

7

25

15

30

7

15

30

7

12

15

30

7

15

30

15 20 * 30 7 25 * 12 * *Empty
stack

Conventions:

- value: Push value on stack

- * : Pop from stack

15

20

*

30

7

25

*

12

*

*

O
rd

er o
f o

p
eratio

n
s

Output: 20, 25, 12, 7

Terminology
Input, Operations, and Output Sequence

6

Operations:

15

20

*

30

7

25

*

12

*

* 15 15

20

15 15

30

15

30

7

15

30

7

25

15

30

7

15

30

7

12

15

30

7

15

30

15 20 * 30 7 25 * 12 * *Empty
stack

In this example:

The input sequence is: 15, 20, 30, 7, 25, 12
The sequence of operations is: 15, 20, *, 30, 7, 25, *, 12, *, *
The output sequence produced by these operations on a stack is: 20, 25, 12, 7
The stack and its changes is shown below.

Notation conventions for multiple operations and online testing

7

15

20

15 15

30

7

25

15

30

7

15

30

7

12

15

30

(15,20) * (30,7,25) * 12 (*,*)Empty
stack

15 15

20

15 15

30

15

30

7

15

30

7

25

15

30

7

15

30

7

12

15

30

7

15

30

15 20 * 30 7 25 * 12 * *Empty
stack

Notation conventions for online
testing (in Canvas):
Operation:stack after that operation
E.g.:
: (empty stack)
15:15 (push 15 & stack)
20:15,20 (push 20 & stack)
*:15 (pop & stack)
7,34:15,7,34 (push 7 then push 34)
***: (pop,pop,pop)

shows multiple operations of the same type

Exercises

1. Given sequence of operations, show the stack and output:
1. ROS**T*E*X*

2. ROS**T*E***X* (error)

3. SOM**E*T**H*I*NGTO*D**O*** (a longer example)

2. Given input and output sequence, show the push and pop operations
Example: given input: CAT and output ACT, the answer is: CA**T* . (Insert * in the
input sequence s.t. that these operations give the desired output.)

1. Input: INSATE,

1. Output: SANETI, Operations Sequence:

2. Output: ANSITE, Operations Sequence: (error)

8

Conventions:

letter - push(letter)

* - pop()

Implementing Stacks

• A stack can be implemented using:

– Single Linked List – see animation

– Array - see animation

• Both implementations are straightforward.

9

https://www.cs.usfca.edu/~galles/visualization/StackLL.html
https://www.cs.usfca.edu/~galles/visualization/StackArray.html

Single Linked List - Based Stacks
• Linked List implementation:

– What is a stack?
• A stack is a single linked list.

– push(&stack, item)
• How? :

• O(1) – wanted (frequent operation for this data structure)

– pop(&stack)
• How? :

• O(1) – wanted (frequent operation for this data structure)

• What type of insert and remove are fast for single linked lists?

– How many ‘ways’ can we insert in a list?

• See animation

10

NULL…

https://www.cs.usfca.edu/~galles/visualization/StackLL.html

Single Linked List - Based Stacks

• List-based implementation:

– What is a stack?
• A stack is a single linked list.

– push(&stack, item)
• How? : inserts that item at the beginning of the list.

• O(1)

– pop(&stack)
• How? : removes (and returns) the item at the beginning of the list.

• O(1)

• See animation

11

NULL…30cd
my_list

30cd

First node with data

https://www.cs.usfca.edu/~galles/visualization/StackLL.html

Array-Based Stacks

12

Array-based Stacks

• Array-based implementation:

– What is a stack? What will hold the data of the stack?

– push(&stack, item)
• How? :

• Time : O(1) - can we get this?

• Space: O(1) ?

– pop(&stack)
• How? :

• Time: O(1) - can we get this?

• Space: O(1) ?

– Perform operations: push(5), push(8), push(20), pop()

13

0 1 2 3 4

Array-based Stacks

• Array-based implementation:

– What is a stack? What will hold the data of the stack?
• An array.

– push(&stack, item)
• How? : ‘insert’ at the end of the array.

• Time: O(1) - Yes

• Space: O(1)

– pop(&stack)
• How? : ‘remove’ from the end of the array.

• Time: O(1) - Yes

• Space: O(1)

• See animation

14

0 1 2 3 4

https://www.cs.usfca.edu/~galles/visualization/StackArray.html

Defining Stacks Using Arrays

struct stack_array

{

int * items;

int top; //index AFTER last item

int capacity;

};

15

555

8

items
40af

Stack

top
2

capacity
9

0

index

1

2

3

4

5

6

7

8

40af

We must choose clear conventions for:
- How to represent the stack

- What an empty stack looks like (NULL or unused space?)
- What a full stack looks like
- What a stack that is partially filled looks like

- What happens at push (how the stack changes)
- What to do if stack is full: resize or refuse

- What happens at pop (how the stack changes)
- What to do if stack is empty

Once we chose the below representation (i.e. the data to represent
the state of the stack) we must be specific about how it works. For
example there are two options for top:

- it points to the last element on the stack
- it points to the first available cell on the stack (where the new

item pushed onto the stack would be placed)
See animation

https://www.cs.usfca.edu/~galles/visualization/StackArray.html

Creating a New Stack
struct stack_array{

int * items;

int top; //index AFTER last item

int capacity;

};

// struct stack_array S = newStack(9); // in main

struct stack_array newStack(int cap){

struct stack_array res;

//Item temp[cap]; res.items = temp; // BAD

res.items = malloc(cap*sizeof(int));

res.capacity = cap;

res.top = 0;

return res;

}

16

Do not use an array for items (e.g. items[100])!
See the Victim-TAB example showing the
difference between Stack and Heap memory.

Why is it ok to return res? (Does it have the TAB pb?) 55

items
40af

Stack

top
0

capacity
9

0

index

1

2

3

4

5

6

7

8

Array-based Stacks

17

55

3

top

5

8

20

push(5)
push(8)
push(20)
pop()

0

index

1

2

3

4

5

6

7

8

55

0

top

0

index

1

2

3

4

5

6

7

8

55

1

top

50

index

1

2

3

4

5

6

7

8

55

2

top

5

8

0

index

1

2

3

4

5

6

7

8

55

2

top

5

8

0

index

1

2

3

4

5

6

7

8

empty push(5) push(8) push(20) pop()

Destroying a stack
struct stack_array{

int * items;

int top; //index AFTER last item

int capacity;

};

void destroy(struct stack_array * S){

if (S!=NULL) {

free(S->items); // what happens if S->items is NULL?

S->items = NULL;

S->capacity = 0; S->top = 0;

}

}

// main

// struct stack_array S = newStack(9);

// destroy(&S);

18

Do not use an array for items (e.g. items[100])!
See the Victim-TAB example showing the
difference between Stack and Heap memory.

Why is it ok to return res? (Does it have the TAB pb?) 55

items
NULL

Stack

top
0

capacity
0

0

index

1

2

3

4

5

6

7

8

Practice: write push(), pop()

typedef int Item;

struct stack_array

{

Item * items;

int top; //index AFTER last item

int capacity;

};
19

555

8

items
40af

Stack

top
2

capacity
9

0

index

1

2

3

4

5

6

7

8

40af

___ push(struct stack_array * myStack, int newItem)

____________ pop(struct stack_array * myStack)

Practice: write push(), pop()

struct stack_array

{

int * items;

int top; //index AFTER last item

int capacity;

};
20

555

8

items
40af

Stack

top
2

capacity
9

0

index

1

2

3

4

5

6

7

8

40af

void push(struct stack_array * myStack, int newItem) {

if ((myStack==NULL) || (myStack->top==myStack->capacity))

printf("Full or myStack is NULL. Exit");

else {

myStack->items[myStack->top] = newItem;

myStack->top++; // top becomes 3

}

}

int pop(struct stack_array * myStack)

int temp = 0; // or some other default item value, e.g. -1

if ((myStack==NULL) || (myStack->top==0)) {

printf("The stack is empty. Exit");

}

else {

myStack->top--; // top becomes 1

temp = myStack->items[myStack->top]; // temp has value 8

}

return temp;

}

Summary and Practice

• Summary
– Stack

– Implementation (code)
• Time complexity

• Space complexity

– Application

• Practice from leetcode
– 20. Valid Parentheses

https://leetcode.com/problems/valid-parentheses/

– 1544. Make The String Great

https://leetcode.com/problems/make-the-string-great/

– 1190. Reverse Substrings Between Each Pair of Parentheses

https://leetcode.com/problems/reverse-substrings-between-each-pair-of-parentheses/

21

https://leetcode.com/problems/valid-parentheses/
https://leetcode.com/problems/make-the-string-great/
https://leetcode.com/problems/reverse-substrings-between-each-pair-of-parentheses/

Solution for input CAT, output ACT -> give operations

• Input CAT: push(C), push(A), push(T) insert pops in between them to get
the output ACT

• Output ACT

:

C:C

A:CA

*: C

*:

T: T

*:
22

• INSATE

• Ouput: SANETI

INS: INS

*: IN (S)

A:INA

*: IN (A)

*: I (N)

TE: ITE

*: IT (E)

*: I (T)

*: (I)
23

Solution for input INSATE, output SANETI -> give operations

	Default Section
	Slide 1
	Slide 2: General Queues
	Slide 3: Stack (Pushdown Stack)
	Slide 4: Push / Pop – Work sheet
	Slide 5: Push / Pop – Answers
	Slide 6: Terminology Input, Operations, and Output Sequence
	Slide 7: Notation conventions for multiple operations and online testing
	Slide 8: Exercises
	Slide 9: Implementing Stacks
	Slide 10: Single Linked List - Based Stacks
	Slide 11: Single Linked List - Based Stacks
	Slide 12: Array-Based Stacks
	Slide 13: Array-based Stacks
	Slide 14: Array-based Stacks
	Slide 15: Defining Stacks Using Arrays
	Slide 16: Creating a New Stack
	Slide 17: Array-based Stacks
	Slide 18: Destroying a stack
	Slide 19: Practice: write push(), pop()
	Slide 20: Practice: write push(), pop()
	Slide 21: Summary and Practice
	Slide 22: Solution for input CAT, output ACT -> give operations
	Slide 23: Solution for input INSATE, output SANETI -> give operations

