
Stacks – Calculator Application

Alexandra Stefan

1 9/24/2019

Infix and Postfix Notation

• The standard notation we use for writing mathematical expressions
is called infix notation.
– The operators are between the operands.

• There are two alternative notations:

– prefix notation: the operator comes before the operands.
– postfix notation: the operator comes after the operands.

• Example:

– infix: 5 * (((9 + 8) * (4 * 6)) - 7)
– prefix: (* 5 (- (* (+ 9 8) (* 4 6)) 7))
– postfix: 5 9 8 + 4 6 * * 7 - * (use , if needed: 5, 9, 8, +, 4, 6, *, *, 7, -, *

• No parentheses needed.
• Can be easily evaluated using a stack.

2

operand
operator

Processing a Symbolic Expression

• How do we process an expression such as:
– 5 * (((9 + 8) * (4 * 6)) - 7)
– postfix: 5, 9, 8, +, 4, 6, *, *, 7, -, *

• Think of the input as a list of tokens.
– Assume it is already tokenized

• A token is a logical unit of input, such as:

– A number
– An operator
– A parenthesis.

3

Tokens

• A token is a logical unit of input, such as:
– A number
– An operator
– A parenthesis.

• What are the tokens in:
– 51 * (((195 + 8) * (4 - 6)) + 7)

• Answer: 51, *, (, (, (, 195, +, 8,), *, (, 4, -, 6,),), +, 7,)
– 19 tokens.
– Note that a token is NOT a character. For example 195 is one token, but it

contains 3 charatcters.
– We will not discuss how to build tokens from characters.

• The numbers are the difficult part.

4

Converting Infix to Postfix
Input: a list/stream of tokens in infix order.

Output: a list of tokens in postfix order.

Assumptions:

1. Each operator has two operands.

2. The input is fully parenthesized.

Every operation (that contains an operator and its two operands) is enclosed in
parentheses.

5

Fully
parenthesized

Not fully parenthesized
(not allowed as input)

(3+5) 3+5

(2+(5-4)) (2+5-4)
2+(5-4)
2+((5-4))

((2 + 9) - (4 + 5)) (2 + 9) - (4 + 5)

Infix Postfix

(5 * (((2 + 8) / (6 - 4)) - 7))

- Numbers go in the result list
- Operators go on the op_stack
 (the stack shown grows to the right)

- Left parenthesis, (, are ignored.
- At right parenthesis,), pop operator from
op_stack and add it to the result list.

T op_stack result list

5 5

* *

2 5 2

+ * +

8 5 2 8

) * 5 2 8 +

/ * /

6 5 2 8 + 6

- * / -

4 5 2 8 + 6 4

) * / 5 2 8 + 6 4 -

) * 5 2 8 + 6 4 - /

- * -

7 5 2 8 + 6 4 - / 7

) * 5 2 8 + 6 4 - / 7 -

) 5 2 8 + 6 4 - / 7 - * 6

input: a stream of tokens in infix order.

output: a list, result, of tokens in postfix order.

(Uses a stack: op_stack)

result = empty list

op_stack = empty stack

while(the input stream is not empty)

T = next token

If T is left parenthesis, ignore.

If T is a number, insertAtEnd(result, T)

If T is an operator, push(op_stack, T).

If T is right parenthesis:

op = pop(op_stack)

insertAtEnd(result, op)

Evaluating Expressions in Postfix Notation

Postfix: 5 2 8 + 6 4 - / 7 - *
Token list: 5, 2, 8, +, 6, 4, -, /, 7, -, *

8

2

5

10

5

5,2,8 +

2+8 = 10

4

6

10

5

6,4

2

10

5

-

6-4 = 2

5

5

/

10/2 = 5 7

5

5

7

-2

5

-

 5-7 = -2

-10

*

5*(-2)=-10

-10

7

while(token list is not empty)

 T = remove next token (number or operator) from list.

 If T is a number, push(stack, T).

 If T is an operator:

 A = pop(stack)

 B = pop(stack)

 C = apply operator T on A and B

 (order: B T A, e.g.: B-A)

 push(stack, C)

final_result = pop(stack)

Input: a list tokens in infix order.

Output: the result of the calculation (a number).

Assumption: the list of tokens is be provided as input.

Here the * indicates the multiplication operator, not a pop() operation on the stack.
We do not explicitly show the pop operations. Instead, for each operator we pop, pop, calculate, push.

Another example

8

Infix Postfix

(5 * (((9 + 8) / (4 * 6)) - 7))

- Numbers go in the result list
- Operators go on the op_stack
 (the stack shown grows to the right)

- Left parenthesis, (, are ignored.
- At right parenthesis,), pop operator from
op_stack and add it to the result list.

T op_stack result list

5 5

* *

9 5, 9

+ * +

8 5, 9, 8

) * 5 , 9, 8, +

/ * /

4 5, 9, 8, +, 4

* * / *

6 5, 9, 8, +, 4, 6

) * / 5, 9, 8, +, 4, 6, *

) * 5, 9, 8, +, 4, 6, *, /

- * -

7 5, 9, 8, +, 4, 6, *, /, 7

) * 5, 9, 8, +, 4, 6, *, /, 7, -

) 5, 9, 8, +, 4, 6, *, /, 7, -, * 9

input: a stream of tokens in infix order.

output: a list, result, of tokens in postfix order.

(Uses a stack: op_stack)

result = empty list

op_stack = empty stack

while(the input stream is not empty)

T = next token

If T is left parenthesis, ignore.

If T is a number, insertAtEnd(result, T)

If T is an operator, push(op_stack, T).

If T is right parenthesis:

op = pop(op_stack)

insertAtEnd(result, op)

Evaluating Expressions in Postfix Notation

Postfix: 5 9 8 + 4 6 * / 7 - *
Token list: 5, 9, 8, +, 4, 6, *, /, 7, -, *

8

9

5

17

5

5,9,8 +

9+8 = 17

6

4

17

5

4,6

24

17

5

*

4*6 = 24

0.7

5

/

17/24 ≈ 0.7 7

0.7

5

7

-6.3

5

-

0.7-7 = -6.3

-31.5

*

5*(-6.3)= -31.5

-31.5

10

while(token list is not empty)

 T = remove next token (number or operator) from list.

 If T is a number, push(stack, T).

 If T is an operator:

 A = pop(stack)

 B = pop(stack)

 C = apply operator T on A and B

 (order: B T A, e.g.: B-A)

 push(stack, C)

final_result = pop(stack)

Input: a list tokens in infix order.

Output: the result of the calculation (a number).

Assumption: the list of tokens is be provided as input.

