
FIFO Queues

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

13/4/2025

FIFO Queues

• First-in first-out (FIFO) queues.

• Examples of usage of FIFO queues:
– Program execution:

• Requests for access to memory, disk, network...

– Resource allocation:

• Forwarding network traffic in network switches and routers.

– Search algorithms.

• E.g. part of BFS in Graphs, level-order traversal for trees. (See later in the course)

• Main operations:
– put - inserts an item at the end of the queue. (add/offer/enqueue/insert)

– get - removes the item from the head of the queue. (remove/poll/dequeue)

• 2 implementations for FIFO queues: single linked list & array

2

Linked List Implementation
for FIFO Queues

• A FIFO queue is essentially a list.

• put(&queue, item) inserts that item at the end of the list. - O(1)

– Assumption: the list data type contains a pointer to the last element.

• get(&queue) removes (and returns) the item at the beginning of the list. - O(1)

• See animation

3

7 3 1

my_queue (struct queue_list)

18

30cd

typedef struct node * nodePT;

struct queue_list {

nodePT head;

nodePT tail;

int size;

};

head (nodePT)

30cd

tail (nodePT)

10bd

size (int)

9

10bd

https://www.cs.usfca.edu/~galles/visualization/QueueLL.html

Conventions:
place where the new item will be added (tail).

underline: first item in the queue (head).
x – put(x)
* – get()

Array-Based Queue: Example

put(15)

put(20)

get()

put(30)

put(7)

get()

put(12)

get()

get()

struct queue_array {

int capacity;

int size;

int head; // index OF first item

int tail; // index AFTER last item

int *items;

};

4

See animation

https://www.cs.usfca.edu/~galles/visualization/QueueArray.html

Array Implementation for FIFO Queues

25

struct queue_array {

int capacity;

int size;

// index of first item

int head;

// index AFTER last item

int tail;

int *items;

};

typedef struct queue_array Queue;

5

bool put(Queue * Q, int val){

if ((Q==NULL)||(Q->size == Q->capacity-1)) {// full

return false;

}

Q->size++;

Q->items[Q->tail] = val;

Q->tail = (Q->tail+1)%Q->capacity;

return true;

}

bool get(Queue * Q, int* ret){

if ((Q==NULL) || (Q->size == 0)){

return false;

}

*ret = Q->items[Q->head];

Q->head = (Q->head+1)%Q->capacity;

Q->size--;

return true;

}

Issues with reallocation
Assume that if the queue is full and a put operation is called you will NOT refuse the
insertion, instead you will reallocate the array to make a bigger queue. (Assume the
initial max_size is 10)

Q1. How do reallocate?

a) +10 (an extra 10 spaces)

b) *2 (double the space)

Assume you allocate a queue of max size 10 at first. The user keeps inserting items
until they put M items in the queue. (M can be a 1000000)

For Q1 a) and b) above answer:

- how many reallocations are needed

- Time complexity of all the reallocations and data copying to put all M items in

Q2. How do you reallocate memory and how do you “copy”? Consider these options:

- (Realloc) or (malloc with memcopy)

- Malloc with copy one by one (e.g. newArr[i] = oldArr[i])

- Reinsert one by one 6

Array Implementation for FIFO Queues
struct queue_array {

int capacity;

int size;

// index of first item

int head;

// index AFTER last item

int tail;

int * items;

};

typedef struct queue_array Queue;

7

If for the put() operation, when the queue is full,
we want to reallocate, how will we copy the data
from the old array into the new one?
We must do it in such a way that whatever
sequence of operations follows, the data is
processed in the correct order, in particular, it will
be removed from the queue in the FIFO order.
E.g. if we follow with: 100,*,*,*,*,*
We should get the data in order: 20,30,7,100

7 20 30

good bad

7 20 30

	Default Section
	Slide 1
	Slide 2: FIFO Queues
	Slide 3: Linked List Implementation for FIFO Queues
	Slide 4: Array-Based Queue: Example
	Slide 5: Array Implementation for FIFO Queues
	Slide 6: Issues with reallocation
	Slide 7: Array Implementation for FIFO Queues

