Trees (Part 1, Theoretical)

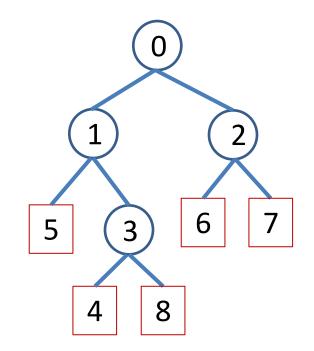
CSE 3318 – Algorithms and Data Structures University of Texas at Arlington

Trees

- Trees are a natural data structure for representing specific data.
 - Family trees.
 - Organizational chart of a corporation, showing who supervises who.
 - Folder (directory) structure on a hard drive.
- Theoretical usage analysis of recursive functions with 2 or more recursive calls

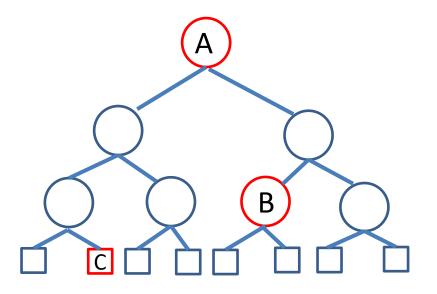
Terminology

- **Root**: 0 (has no parent)
- *Path*: 0-2-6, 1-3, 1-3-4
- Parent vs child
- Ascendants vs descendants:
 - ascendants of 3: 1,0
 - descendants of 1: 5, 3, 4, 8
- Internal nodes: 0, 1, 2, 3
 - Have 1 or more children
- *Leaves*: 5,4,6,7,8
 - Have no children
- Subtree



Terminology - Worksheet

- The *level* of the root is defined to be 0.
- The *level* of each node is defined to be 1+ the level of its parent.
- The *depth* of a node is the number of edges from the root to the node.
 (It is equal to the level of that node.)
- The *height* of a node is the number of edges *from the node to the deepest leaf*. (Treat that node as the root of a small tree)



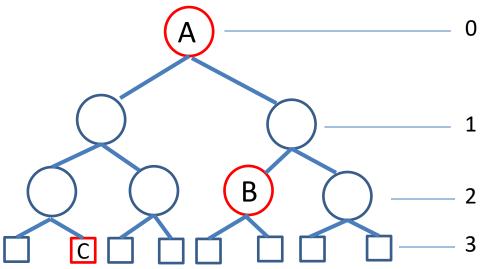
Node	level	depth	height
А			
В			
С			

Practice:

- Give the level, depth and height for each of the red nodes.
- How many nodes are on each level?

Terminology - Answers

- The *level* of the root is defined to be 0.
- The *level* of each node is defined to be 1+ the level of its parent.
- The *depth* of a node is the number of edges from the root to the node.
 (It is equal to the level of that node.)
- The *height* of a node is the number of edges *from the node to the deepest leaf*. (Treat that node as the root of a small tree)



Node	level	depth	height
А	0	0	3
В	2	2	1
С	3	3	0

level

Practice:

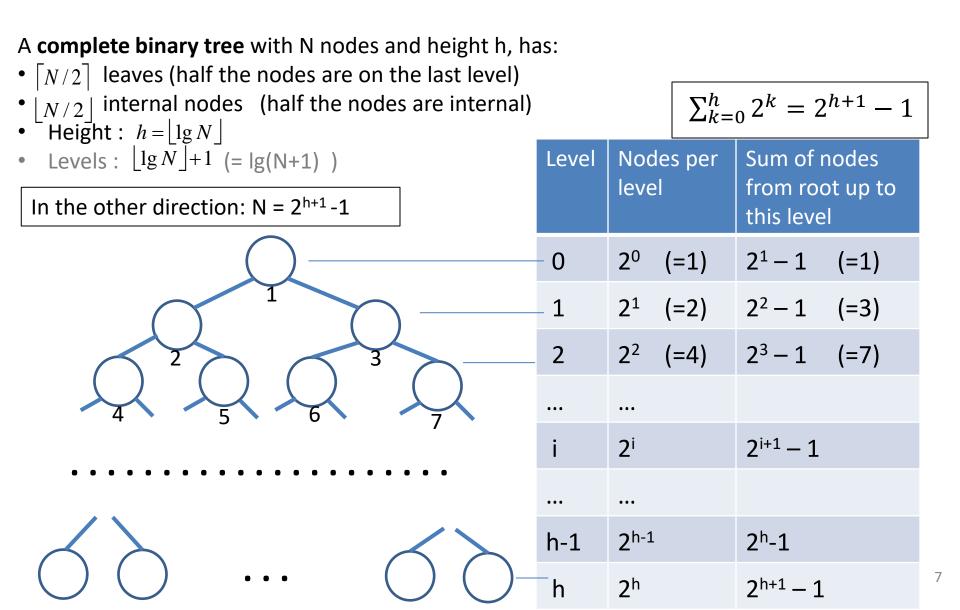
- Give the level, depth and height for each of the red nodes.
- How many nodes are on each level? <u>1, 2, 4, 8</u>

Types of binary trees

- Complete (or perfect) each internal node has exactly 2 children and all the leaves are on the same level.
 - E.g. ancestry tree (anyone will have exactly 2 parents).
- Full [binary] every node has exactly 0 or 2 children.
 - Tree of recursive calls when there are 2 recursive calls
 - E.g. tree generated by the Fibonacci recursive calls.
 - => his properties are used in analyzing time complexity of such rec fcts.
 - Binary tree.
- Nearly complete tree every level, except for possibly the last one is completely filled and on the last level, all the nodes are as far on the left as possible.
 - E.g. the heap tree.
 - Height: $\lfloor \lg N \rfloor$ and it can be stored as an array.

Nearly Complete tree

Complete Binary Trees



Nearly Complete Tree

Bad

3

- All levels are full, except possibly for the last level.
- At the last level:
 - Nodes are on the left.
 - Empty positions are on the right.

Bad

There is "no hole"

Bad

8

Good

5

3

9

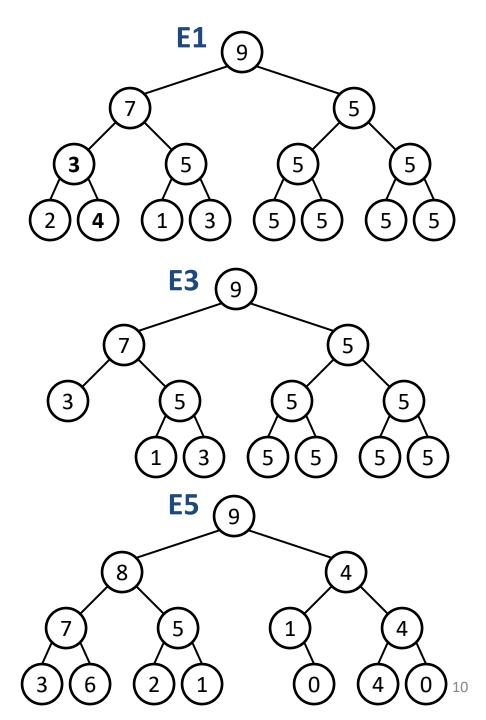
3

Worksheet

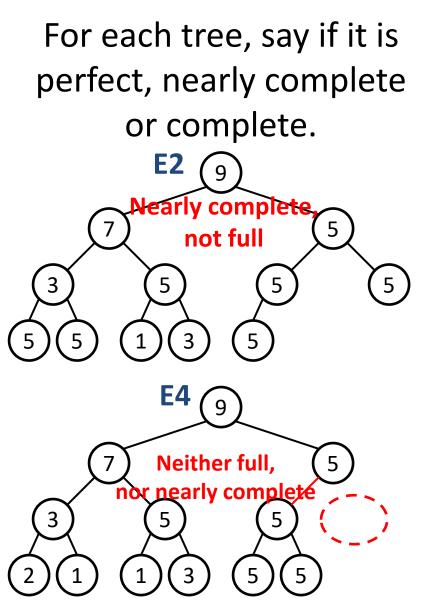
- Self study: Give examples of trees that are:
 - Complete
 - Full but not nearly complete
 - Nearly complete but not full
 - Neither full not nearly complete

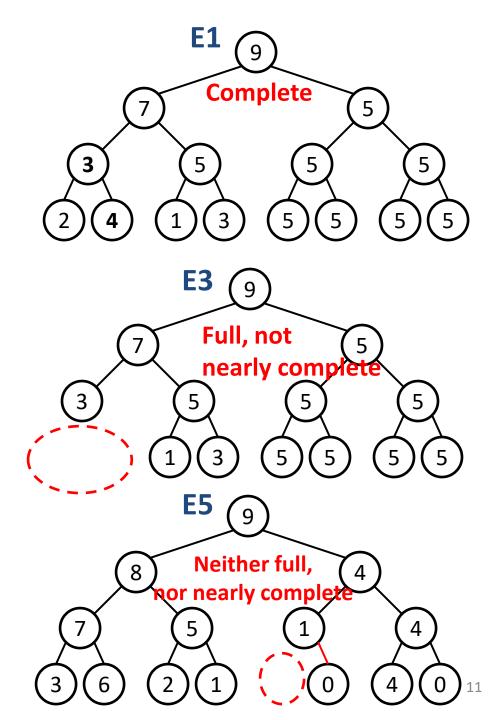
Worksheet

For each tree, say if it is full, nearly complete or complete. **E2 E4**



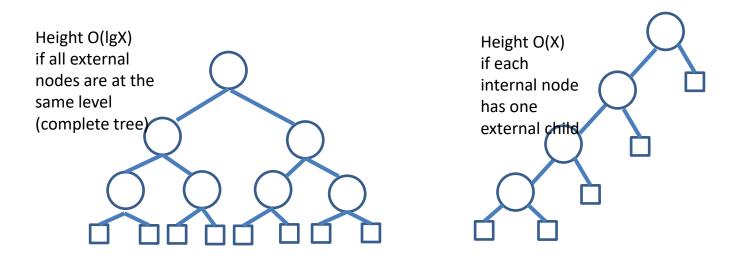
Answers





Properties of Full Trees

- **Full** binary tree : every node has exactly 0 or 2 children. No nodes with only 1 child.
- A **full** binary tree with X internal nodes has:
 - X+1 external nodes.
 - 2X edges (links).
 - N = 2X+1 (total number of nodes)
 - height at least Ig X and at most X:



Proof

Prove that a full tree with P internal nodes has P+1 external leaves.

- Full tree property:
- What proof style will you use?

Proof

Prove that a full tree with P internal nodes has P+1 external leaves.

- Full tree property:
- What proof style will you use?