
Trees

(part 2 – Data Structure)

CSE 3318 – Algorithms and Data Structures

University of Texas at Arlington

110/17/2024

Student Self-Review

• Review the theoretical lecture on trees that was covered
earlier in the semester.

• Review your notes and materials on implementing trees in C.

2

leetcode
• 993. Cousins in Binary Tree (ok)

• 257. Binary Tree Paths (challenging)

• 94. Binary Tree Inorder Traversal

• 98. Validate Binary Search Tree

• Many more…

https://leetcode.com/problems/cousins-in-binary-tree/
https://leetcode.com/problems/binary-tree-paths/
https://leetcode.com/problems/binary-tree-inorder-traversal/description/
https://leetcode.com/problems/validate-binary-search-tree/submissions/912321580/

Main concepts:

• Traversals

– Depth first: postorder, preorder, inorder (recursive)

– Breadth first: level order (iterative), see it used in leetcode to describe trees

• Other functions: count nodes, compute height

• Analyzing time complexity for recursive functions on binary trees.
– Uses: Tree of recursive function calls (TRC), local time complexity (TCL) and full tree and its property

• TRC - Tree of Recursive [function] Calls

– This is a FULL tree (using the internal nodes-leaves property of full trees allows us to compute the
time complexity)

– Shown on the tree and also

– Shown with local cost written in the nodes – we will see more of this later on

• Full tree

– Definition: Every node has exactly 0 or 2 children (there is NO node with just 1 child)

– Property: leaves=1+internal_nodes=> total_nodes=1+2internal_nodes (regardless of shape)

• TCL – local time complexity

– Time complexity/work done in a function call, EXCLUDING the [work in] recursive calls

• TRC and TCL are acronyms that I created

3

https://leetcode.com/problems/maximum-depth-of-n-ary-tree/

typedef struct TreeNode * TreeNodePT;

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

4

Traversing a Binary Tree

• Traversal - go through each node and do something with it. E.g.:
– print it

– change it

– use its content to compute something

• Standard traversals
– Preorder (Root, Left, Right): visit the node, then its left subtree, then its right subtree.

– Inorder (Left, Root, Right): visit the left subtree, then the node, then the right subtree.

– Postorder (Left, Right, Root): visit the left subtree, then the right subtree, then the node.

– Level order: going from tree level 0 to the last and left to right within level.

(breadth-first order)

5

0

1 12

preorder (Ro, L, R)

0

1 12

postorder (L, R, Ro)

0

1 12

inorder (L, Ro, R)

levelorder

(d
ep

th
-f

ir
st

 o
rd

e
r)

To remember the name for each traversal, think about where/when the root is processed with respect to its children.

6

0

1

7

12

65

3 10 2

4 8

0

1

7

12

65

3 10 2

4 8

0

1

7

12

65

3 10 2

4 8

Preorder (___, ___, ___): Postorder (___, ___, ___):

Inorder (___, ___, ___):

0

1 12

preorder

0

1 12

inorder

0

1 12

postorder

Note: This is NOT a
search tree. It has
no order relation
between nodes.

Recursive Tree Traversal

7

For a tree with N nodes:

Time complexity:

Space complexity:

void inorder(TreeNodePT h){

if (h == NULL) return;

inorder (h->left);

do_something(h);

inorder (h->right);

}

void preorder(TreeNodePT h){

if (h == NULL) return;

do_something(h);

preorder (h->left);

preorder (h->right);

}

void post (TreeNodePT h){

if (h == NULL) return;

post(h->left);

post(h->right);

do_something(h);

}

typedef struct TreeNode * TreeNodePT;

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

Other possible fields:

- TreeNodePT parent;

- int size; //size of subtree rooted at this
node. Useful for balancing trees.

- Anything else you need to add to solve a problem

Recursive Tree Traversal - Answer

8

void inorder(TreeNodePT h){

if (h == NULL) return;

inorder (h->left);

do_something(h);

inorder (h->right);

}

void preorder(TreeNodePT h){

if (h == NULL) return;

do_something(h);

preorder (h->left);

preorder (h->right);

}

void post (TreeNodePT h){

if (h == NULL) return;

post(h->left);

post(h->right);

do_something(h);

}

For a tree with N nodes:

Time complexity: Θ(N) (assume do_something(h) is Θ(1))
See derivation on next page

Space complexity: Θ(treeHeight) (O(N)) (b.c. recursion)

(if we exclude the recursion frame stack: Θ(1))

typedef struct TreeNode * TreeNodePT;

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

Other possible fields:

- TreeNodePT parent;

- int size; //size of subtree rooted at this
node. Useful for balancing trees.

- Anything else you need to add to solve a problem

Postorder traverasal – code tracing

9

void post(TreeNodePT h){

if (h == NULL) return;

post(h->left);

post(h->right);

printf("%d, ", h->data);

}

post(0) [0aaa]
--- post(1)
------ post(5)
--------- post(null) return
--------- post (3))
------------ post (null)
------------ post (null)
------------ 3
--------- 5
------ post (null)
------1
---post (12)
…..

0

1

7

12

65

3 10 2

4 8

null

null null

null null null null

null

null

null null

Let N be the
number of nodes
of the tree to be
traversed.
E.g. here N = 11

null

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

Postorder traverasal –
Time complexity derivation using the tree of recursive calls (TRC)

10

void post(TreeNodePT h){ // postorder

traversal

if (h == NULL) return;

post(h->left);

post(h->right);

printf("%d, ", h->data);

}

The TREE of RECURSIVE CALLS (TRC) is a FULL tree where
- internal nodes of TRC correspond to fct calls on the original tree nodes (including leaves of the original

tree) – (blue circles in picture) => N nodes
- leaves of TRC correspond to the calls for null, (red rectangles in picture)
Full tree property: leaves = internal nodes+1 => post(null) calls = 1+post(node) calls =1+N =>
=> Total recursive calls =post(node)+post(null) = N+(1+N), and each recursive call has TCL()=Θ(1) => The
time complexity to traverse the entire tree (TC (root)) is total_rec_calls*TCL() = (2N+1)* Θ(1) = Θ(N)
Where TCL is the LOCAL time complexity/work done in one function call, EXCLUDING the recursive calls

0

1

7

12

65

3 10 2

4 8

null

null null

null null null null

null

null

null null

Let N be the
number of nodes
of the tree to be
traversed.
E.g. here N = 11

TCL, local time complexity,
is given by what
instructions here?
TCL() = Θ(1)

post(0) [0aa]
--- post(1) [1aa]
------ post(5) [5aa]
--------- post(null) return
--------- post (3) [3aa]
------------ post (null)
------------ post (null)
------------ 3 printed
--------- 5 printed
------ post (null)
------1 printed
---post (12)
…..

null

Postorder traverasal –
TREE of RECURSIVE CALLS showing the LOCAL cost, c, in each node

11

void post(TreeNodePT h){ // postorder traversal

if (h == NULL) return;

post(h->left);

post(h->right);

printf("%d, ", h->data);

}

The TREE of RECURSIVE CALLS (TRC) is a FULL tree where
- internal nodes of TRC correspond to fct calls on the original tree nodes (including leaves of the original tree) – (blue

circles in picture) => N nodes
- leaves of TRC correspond to the calls for null, (red rectangles in picture)
Full tree property: leaves = internal nodes+1 => post(null) calls = 1+post(node) calls =1+N =>

=> Total recursive calls =post(node)+post(null) = N+(1+N), and each recursive call has TCL()=Θ(1) =c => The
time complexity to traverse the entire tree (TC (root)) is total_rec_calls*TClocal() = (2N+1)* c = 2cN+c= Θ(N)
Where TCL is the LOCAL time complexity/work done in one function call, EXCLUDING the recursive calls

c

c

c

c

cc

c c c

c c

c

c c

c c c c

c

c

c c

Let N be the
number of nodes
of the tree to be
traversed.
E.g. here N = 11

TCL, local time complexity,
is given by what
instructions here?
TCL() = Θ(1) = c

TCL(null) and TCL(non_null_node)
are both constant, but not
necessarily the same actual
constant. (NOTE that this is TCL, LOCAL
TC, not the entire TC for that function
call.)

HOWEVER we will use the same
constant, c, for the local cost for
recursive cases (blue nodes) and
base case (red nodes. (Imagive you
pick the larger of the two actual
local costs.)

Class Practice

• Write the following (recursive or not) functions, in class:
– Count the number of nodes in a tree

– Compute the height of a tree
• height of a leaf is 0 (node with no child)

– Level-order traversal – discuss/implement

– Print the tree in a tree-like shape – discuss/implement

• Which functions are “similar” to the traversals discussed previously
and to each other?

12

Recursive Examples

13

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1;

}

int height(TreeNodePT h){

if (h == NULL) return -1;

int u = height(h->left);

int v = height(h->right);

if (u > v)

return u+1;

else

return v+1;

}

Count the number of nodes in the tree Compute the height of the tree

c1
c2

u

Can you write the countTwo used below?
It does not return the count, but modifies the argument ct.

int ct = 0;

countTwo(root,&ct);

printf("ct=%d",ct);// gives correct count

v

14

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

15

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(TreeNodePT h){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(______){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(______){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(______){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

int count(______){

if (h == NULL) return 0;

int c1 = count(h->left);

int c2 = count(h->right);

return c1 + c2 + 1; }

Recursive Examples: print tree

16

void print_node(int val, int depth) {

int i;

for (i = 0; i < depth ; i++)

printf(" ");

printf("%d\n", val);

}

void show(TreeNodePT x, int depth) {

if (x == NULL) {

printnode(-1, depth);

return;

}

print_node(x->data, depth);

show(x->left, depth+1);

show(x->right, depth+1);

}

Prints the contents of each node

How will the output look like?

What type of tree traversal is this?

Note how the pass-by-value works for
the depth variable: the correct depth is
passed for each node, and even after
returning from the recursive call(s), it
remains correct for the current node.
E.g. after the call show(x->left, depth+1)
depth is still the depth of this node.
We want pass-by-value, NOT pass-by-
reference for depth.

Leetcode problem: 257. Binary Tree Paths

Return all paths from the root to leaves.
Store one path? Store all paths?
Time & Space complexity?

Easier: Print all paths from the root to leaves.

Use leetcode to run my code: cousins in binary tree
typedef struct node * nodePT;

struct TreeNode {

int data;

nodePT left;

nodePT right;

};

https://leetcode.com/problems/binary-tree-paths/
https://leetcode.com/problems/cousins-in-binary-tree/

Level-Order Traversal
// Adapted from Sedgewick //Time: _____ Space: _____

void traverse(TreeNodePT h) {

Queue Q = new_Queue();

put(Q,h);

while (!empty(Q)) {

h = get(Q);//removes and returns first node from Q

printItem(h->data);

if (h->left != NULL) put(Q,h->left);

if (h->right != NULL) put(Q,h->right);

}

}

Queue:_______________________

Print:_________________________________

17

0

1

7

12

65

3 10 2

4 8

// Adapted from Sedgewick

// Same code, but uses a function argument void

traverse(TreeNodePT h, void (*visit)(TreeNodePT)) {

Queue Q = new_Queue();

put(Q,h);

while (!empty(Q)) {

h = get(Q); //gets first node

(*visit)(h);

if (h->left != NULL) put(Q,h->left);

if (h->right != NULL) put(Q,h->right);

}

}

Terminology

18

A

B

C

Practice:
- Give the level, depth and height for each of the red nodes.
- How many nodes are on each level? ________1, 2, 4, 8 _____________

Node level depth height

A 0 0 3

B 2 2 1

C 3 3 0

• The level of the root is defined to be 0.

• The level of each node is defined to be 1+ the level of its parent.

• The depth of a node is the number of edges from the root to the node.
(It is equal to the level of that node.)

• The height of a node is the number of edges from the node to the deepest leaf.
(Treat that node as the root of a small tree => height = depth_of_deepest leaf)

level
(=depth)

0

1

2

3

0

1

7

12

65

3 10 2

4 8

Node level depth height

0

6

7

Practice

Complete Binary Trees

19

Level Nodes per
level

Sum of nodes
from root up to
this level

0 20 (=1) 21 – 1 (=1)

1 21 (=2) 22 – 1 (=3)

2 22 (=4) 23 – 1 (=7)

… …

i 2i 2i+1 – 1

… …

L 2L 2L+1 – 1

σ𝑘=0
𝐿 2𝑘 = 2𝐿+1 − 1

1

2 3

7654

. . .

. .

A Complete binary tree with N nodes has:
• +1 levels
• Height :
• leaves (half the nodes are on the last level)
• internal nodes (half the nodes are internal)

 Nlg

 2/N

 2/N

 Nlg

In the other direction: number of nodes = 2height+1 -1

Properties of Full Trees
• Full binary tree : every node has exactly 0 or 2 children. No nodes with only 1 child.

• A full binary tree with X internal nodes has:
– X+1 external nodes.

– 2X edges (links).

– N = 2X+1 (total number of nodes)

– height at least lg X and at most X:

20

Height O(X)
if each internal
node has one
external child

Height O(lgX)
if all external
nodes are at the
same level
(complete tree)

Binary tree shape and height

• A binary tree with N nodes has height
– at least Θ(lgN)

– at most Θ(N)

• We CANNOT assume any binary tree with N
nodes has height Θ(lgN)
– discuss best and worst case

– use worst case in final/general TC

• Some special trees will maintain the Θ(lgN)
height by preserving some properties of the
tree over insertion and deletion.

21

40

23
52

15 37 44

40

23

52

15

37

44

General Trees

• In a general tree, a node can have any number of children.

• Left-child - right-sibling implementation

– Draw tree and show example

– (There is a one-to-one correspondence between ordered trees and binary trees)

22

EXTRA –
Recursive and Iterative

Preorder Traversal (Sedgewick)

Passing functions as
arguments to functions using

function pointers

void traverse(TreeNodePT h) { // recursive

if (h == NULL) return;

printNode(h);

traverse(h->left, visit);

traverse(h->right, visit);

}

void traverse(TreeNodePT h) { // iterative

Stack S = newStack(max);

push(S,h);

while (!isEmpty(S)) {

h = pop(S);

printNode(h);

if (h->right!= NULL) push(S,h->right);

if (h->left != NULL) push(S,h->left);

}

}

23

0

1

7

12

65

3 10 2

4 8
Stack:
Print:

// Visit function is an argument to traversal

void travGen(TreeNodePT h, void (*visit)(TreeNodePT)) {

if (h == NULL) return;

(*visit)(h);

travGen (h->left, visit);

travGen (h->right, visit);

}

	Default Section
	Slide 1
	Slide 2: Student Self-Review
	Slide 3: Main concepts:
	Slide 4
	Slide 5: Traversing a Binary Tree
	Slide 6
	Slide 7: Recursive Tree Traversal
	Slide 8: Recursive Tree Traversal - Answer
	Slide 9: Postorder traverasal – code tracing
	Slide 10: Postorder traverasal – Time complexity derivation using the tree of recursive calls (TRC)
	Slide 11: Postorder traverasal – TREE of RECURSIVE CALLS showing the LOCAL cost, c, in each node
	Slide 12: Class Practice
	Slide 13: Recursive Examples
	Slide 14
	Slide 15
	Slide 16: Recursive Examples: print tree
	Slide 17: Level-Order Traversal

	Review types of trees (from part 1 - Theoretical)
	Slide 18: Terminology
	Slide 19: Complete Binary Trees
	Slide 20: Properties of Full Trees
	Slide 21: Binary tree shape and height

	Extra - Iterative Preorder Traversal
	Slide 22: General Trees
	Slide 23: EXTRA – Recursive and Iterative Preorder Traversal (Sedgewick) Passing functions as arguments to functions using function pointers

