
Recurrences:
Methods and Examples

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

19/24/2024

Background
• Solving Summations

– Needed for the Tree Method

• Math substitution
– Needed for Methods: Tree and Substitution(induction)
– E.g. If T(n) = 3T(n/8) + 4n2.5lgn,

T(n/8) = ………………………………
T(n-1) = ………………………………

• Theory on trees
– Given tree height & branching factor, compute:

nodes per level
total nodes in tree

• Logarithms
– Needed for the Tree Method

• Notation: TC = Time Complexity (cost may also be used instead of time complexity)
• We will use different methods than what was done for solving recurrences in CSE 2315,

but one may still benefit from reviewing that material.

2

Recurrences
• Recursive algorithms

– It may not be clear what the complexity is, by just looking at the
algorithm.

– To find their complexity, we need to:
• Express the TC of the algorithm as a recurrence formula. E.g.:

f(n) = n + f(n-1)
• Find the complexity of the recurrence:

– Expand it to a summation with no recursive term.
– Find a concise expression (or upper bound), E(n), for the

summation.
– Find 𝛩,ideally, or O (big-Oh) for E(n).

• Recurrence formulas may be encountered in other situations:
– Compute the number of nodes in certain trees.
– Express the complexity of non-recursive algorithms (e.g. selection sort).

3

Solving Recurrences Methods

• The Master Theorem

• The Recursion-Tree Method

– Useful for guessing the bound.

• The Induction Method – not covered
– Guess the bound, use induction to prove it.

– Note that the book calls this the substitution method, but I prefer to call it the induction method

4

Recurrence - Recursion Tree
Relationship

T(1) = c

T(n) = a*T(n/b)+ cn

5

Number of subproblems =>
Number of children of a node
in the recursion tree. =>
Affects the number of nodes
per level. At level i there will
be ai nodes.
Affects the level TC.

Size of a subproblem =>
Affects the number of recursive
calls (frame stack max height and
tree height)
Recursion stops at level p for which
the pb size is 1 (the node is labelled
T(1)) => n/bp = 1 =>
Last level, p, will be: p = logbn
(assuming the base case is for T(1)).

The local TC at the node cn

…
a

c(n/b)

T(n)

c(n/b) c(n/b)

c(n/b2)

…

T(n/b)

T(n/b2)

Problem size

.

.

.
T(n/bp)

T(1)
cc

.

.

.

TC = time complexity

Recursion Tree for: T(n) = 2T(n/2)+c

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c 1 c

1 n/2 c 2 2c

2 n/4 c 4 4c

…

i n/2i c 2i 2ic

…

p=lgn 1
(=n/2p)

c 2p

(=n)
2kc

6

c

c

c

c

c c c

. . .

. .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC = c(1+2+22+23+…+2i+…+2p)=c2p+1/(2-1)

= 2c2p = 2cn = Θ(n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p= 1 => p = lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = c

Recursion Tree for: T(n) = 2T(n/2)+8

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n 8 1 8

1 n/2 8 2 2*8

2 n/4 8 4 4*8

…

i n/2i 8 2i 2i*8

…

k=lgn 1
(=n/2k)

8 2k

(=n)
2k*8

7

8

8

8

8

8 8 8

. . .

. .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

Tree TC = c(1+2+22+23+…+2i+…+2p)=8*2p+1/(2-1)

= 2*8*2p = 16n = Θ(n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p= 1 => 2p= n => p = lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = 8

8 8 8 8

If specific value is given instead of c, use that. Here c=8.

Recursion Tree for: T(n) = 2T(n/2)+cn

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

2p

(=n)
2p*c*n/2p

=c*n

8

. . .

. .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p => n/2p=1 => 2p=n => p= lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = c

= 𝑐𝑛 𝑝 + 1 = 𝑐𝑛 1 + 𝑙𝑔𝑛
= 𝑐𝑛𝑙𝑔𝑛 + 𝑐𝑛 = 𝜃(𝑛𝑙𝑔𝑛)

Recursion Tree for T(n) = 3T(n/2)+c

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c

1 n/2 c*n/2 3 3*c
=(3)*c

2 n/4 c*n/4 9 (3)2*c

…

i n/2i c*n/2i 3i (3)i*c

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3)p*c

9

. . .

. .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p=1 => 2p=n => p = lgn

)1(T)1(T)1(T)1(T

2

n
c










2

n
T

c
)1(T

c
)1(T










4

n
T

4

n
c

Base case: T(1) = c

Recursion Tree for T(n) = 3T(n/2)+cn

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 3 3*c*n/2
=(3/2)*c*n

2 n/4 c*n/4 9 (3/2)2*c*n

…

i n/2i c*n/2i 3i (3/2)i*c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3/2)p*c*n

10

. . .

. .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p=1 => 2p=n => p = lgn

)1(T)1(T)1(T)1(T

2

n
c










2

n
T

c
)1(T

c
)1(T










4

n
T

4

n
c

Base case: T(1) = c

Total Tree TC for T(n) = 3T(n/2)+cn

11

)(23232*3

)2/3(:

2)2/3(*3]1)2/3(*)2/3[(2
1)2/3(

1)2/3(
*

)2/3(])2/3(...)2/3()2/3(1[*

)2/3...()2/3...()2/3()2/3()(

3lg3lg13lg113lg

13lg2lg3lg)2/3lg(lglglg

lglg
1lg

lg

0

lg2

lg2

ncncncncncnncn

nnnncuse

cncncncn

cncn

cncncncncnnT

ncn

nn
n

n

i

in

ni

=−=−=−=

======

−=−=
−

−
=

==++++=

=++++=

−+−

−−

+

=

Explanation: since we need Θ, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression):

. . . = 𝑐𝑛 ∗
(3/2)lg 𝑛+1 − 1

(3/2) − 1
= Θ(𝑛 ∗ (3/2) ∗ (3/2)lg 𝑛) = Θ(𝑛 ∗ (3/2)lg 𝑛)

𝑢𝑠𝑒: 𝑐 lg 𝑛 = 𝑛lg 𝑐 => (3/2)lg 𝑛 = 𝑛lg(3/2) = 𝑛lg 3−lg 2 = 𝑛lg 3−1 =>
= Θ(𝑛 ∗ 𝑛lg 3−1) = Θ(𝑛lg 3)

Closed form

Recursion Tree for: T(n) = 2T(n/5)+cn
Level Arg/

pb size
TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/5 c*n/5 2 2*c*n/5
=(2/5)*cn

2 n/52 c*n/52 4 4*c*n/
=(2/5)icn

…

i n/5i c*n/5i 2i 2i*c*n/5i

=(2/5)icn

…

p=
log5n

1
(=n/5p)

c=c*1=
c*n/5p

2p

(=n)
2p*c*n/5p

=(2/5)pcn

12

. . .

. .

5

n
c

5

n
c

cn

25

n
c

25

n
c

25

n
c

25

n
c

)(nT










5

n
T 









5

n
T









25

n
T









25

n
T 








25

n
T

c c c c

Tree TC
(derivation similar to TC for T(n) = 3T(n/2)+cn)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/5p=> n/5p= 1 => 5p=n => p = log5n

)1(T)1(T)1(T)1(T

Total Tree TC for T(n) = 2T(n/5)+cn

13

)()(

)()()(...)(

)()3/5(
)5/2(1

1
*

)5/2()5/2(

])5/2(...)5/2()5/2(1[*

)5/2...()5/2...()5/2()5/2()(

0

log

0

log2

log2

5

5

5

nnT

nnTcnnTcnnT

Also

nOcncn

cncn

cn

cncncncncnnT

i

in

i

i

n

ni

=

=+=

==
−

=

==

=++++=

=++++=




==

Code => Recurrence

int foo(int N){

int a,b,c;

if(N<=3) return 1500; // Note N<=3

a = 2*foo(N-1);

// a = foo(N-1)+foo(N-1);

printf("A");

b = foo(N/2);

c = foo(N-1);

return a+b+c;

}

Base case: T(__) = __________

Recursive case: T(__) = ___________________
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)

14

In the recursive case of the recurrence
formula capture the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function.

Code => Recurrence => Θ

void bar(int N){

int i,k,t;

if(N<=1) return;

bar(N/5);

for(i=1;i<=5;i++){

bar(N/5);

}

for(i=1;i<=N;i++){

for(k=N;k>=1;k--)

for(t=2;t<2*N;t=t+2)

printf("B");

}

bar(N/5);

}

T(N) = …………………………………
Solve T(N)

15

In the recursive case of the recurrence
formula capture the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function.

Compare

16

void foo1(int N){

if (N <= 1) return;

for(int i=1; i<=N; i++){

foo1(N-1);

}

}

T(0)=T(1) = c

T(N) = N*T(N-1) + cN

void foo2(int N){

if (N <= 5) return;

for(int i=1; i<=N; i++){

printf("A");

}

foo2(N-1); //outside of the loop

}

T(N) = c for all 0≤N≤5 (BaseCase(s))

T(N) = T(N-1) + cN (Recursive Case)

int foo3(int N){

if (N <= 20) return 500;

for(int i=1; i<=N; i++){

return foo3(N-1);

// No loop. Returns after the first iteration.

}

}

T(N) = c for all 0≤N≤20 Do not confuse what the function returns with its time

complexity. For the base case, c is not 500. At most, c is 2 (from the 2

instructions: one comparison, N<=20, and one return, return 500)

T(N) = T(N-1) + c

In the recursive case of the recurrence
formula captures the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function. E.g. pay attention to
2*foo(N/3) vs foo(N/3) + foo(N/3)

Code =>recurrence

17

int search(int A[], int L, int R, int v){

int m = (L+R)/2;

if (L > R) return -1;

if (v == A[m]) return m;

if (L == R) return -1;

if (v < A[m]) return search(A,L,m-1,v);

else return search(A,m+1,R,v);

}

(Use: N = R-L+1)

Here, for the same value of N, the behavior depends also on data in A and val.

Best case T(N) = c => search is Θ(1) in best case

Worst case: T(N) = T(N/2) + c => T(N) = Θ(lg(N)) => search is Θ(lg(N))in worst case

 We will report in general: search is O(lg(N))

Code => recurrence

18

int weird(int A[], int N){

if (N<=4) return 100;

if (N%5==0) return weird(A,N/5);

else return weird(A,N-4)+weird(A, N-4);

}

Here, the behavior depends on N so we can explicitly capture that in the

recurrence formulas:

Base case(s): T(N) = c for all 0≤N≤4 (BC)

Recursive case(s):

T(N) = T(N/5)+c for all N>4 that are multiples of 5 (RC1)

T(N) = 2*T(N-4) + c for all other N (RC2)

For any N, in order to solve, we need to go through a mix of the 2 recursive

cases => cannot easily solve. => try to find lower and upper bounds.

Note that RC1 has the best behavior: only one recurrence and smallest subproblem

size (i.e. N/5) => use this for a lower bound =>

Tlower(N) = T(N/5)+c = Θ(log5N) , (and T(N)≥ Tlower(N)) => T(N) = Ω(log5N)

Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem

size (i.e. N-4) => use this for an upper bound =>

Tupper(N) = 2*T(N-4)+c = Θ(2
N/4) , (and T(N)≤Tupper(N)=Θ(2

N/4)) => T(N) = O(2N/4)

We have Ω and O for T(N), but we cannot compute Θ for it.

Recurrence => Code
Answers

• Give a piece of code/pseudocode for which
the time complexity recursive formula is:

– T(1) = c and

– T(N) = N*T(N/2) + cN

19

void foo(int N){

if (N <= 1) return;

for(int i=1; i<=N; i++)

foo(N/2);

}

Recurrences:
Recursion-Tree Method

1. Build the tree & fill-out the table
2. Compute TC per level
3. Compute number of levels (find last level as a function of N)
4. Compute total over levels.

* Find closed form of that summation.

Example 1 : Solve

Example 2 : Solve

 )()4/(3)(2nnTnT +=

)()3/2()3/()(nOnTnTnT ++=

20

Recurrence - Recursion Tree
Relationship

T(1) = c

T(n) = a*T(n/b)+ cn

21

Number of subproblems =>
Number of children of a node
in the recursion tree. =>
Affects the number of nodes
per level. At level i there will
be ai nodes.
Affects the level TC.

Size of a subproblem =>
Affects the number of recursive
calls (frame stack max height and
tree height)
Recursion stops at level p for which
the pb size is 1 (the node is labelled
T(1)) => n/bp = 1 =>
Last level, p, will be: p = logbn
(assuming the base case is for T(1)).

The local TC at the node cn

…
a

c(n/b)

T(n)

c(n/b) c(n/b)

c(n/b2)

…

T(n/b)

T(n/b2)

Problem size

.

.

.
T(n/bp)

T(1)
cc

.

.

.

Level Arg/
pb size

TC of 1
node

Nodes
per
level

Level TC

0

1

2

…

i

…

p=

22Work it out by hand in class.
Draw tree, fill out table.

T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c

T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c Level Arg/
pb size

TC of 1
node

Nodes
per
level

Level TC

0 n cn 3 1 c*n3

1 n/5 c(n/5) 3 7 7*c*(n/5)3

=cn3 (7/53)

2 n/52 c(n/52) 3 72 72*c*(n/52) 3

=cn3 (7/53)2

…

i n/5i c(n/5i) 3 7i 7i*c*(n/5i) 3

=cn3 (7/53)i

…

p=
Log5n

1
(=n/5p)

c=c*1=
c(n/5p) 3

7p 7p*c*(n/5p)3

=cn3 (7/53)p

23

. . .

. .

()35/nc
3)5/(nc

3cn

32)5/(nc 32)5/(nc
32)5/(nc

)(nT










5

n
T 









5

n
T









25

n
T 








25

n
T

c c c c

Stop at level p, when the
subtree is T(1). => The
problem size is 1, but the
general formula for the
problem size, at level p is:
n/5p=> n/5p= 1 => p = log5n

)1(T)1(T)1(T)1(T

…...
……

Where we used: 7𝑖(
𝑛

5𝑖
)3= 7𝑖𝑛3(

1

5𝑖
)3 = 7𝑖𝑛3(

1

53
)𝑖 = 𝑛3 (

7

53
)𝑖

Tree TC: 𝑇 𝑛 = σ𝑖=0
𝑙𝑜𝑔5𝑛 𝑐𝑛3(

7

53
)𝑖 = 𝑐𝑛3σ𝑖=0

𝑙𝑜𝑔5𝑛(
7

53
)𝑖 =

𝑐𝑛3
1−(7/125)1+𝑙𝑜𝑔5𝑛

1−(7/125)
< 𝑐𝑛3

1

1−7/125
= Θ 𝑛3 ⇒ 𝑇 𝑛 = 𝑂 𝑛3

But 𝑇 𝑛 = Ω 𝑛3 ⇒ 𝑇 𝑛 = Θ(𝑛3)

Each internal
node has 7
children

24

T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c

T(n) = 5T(n-6)+c
T(n) = c for all 0 ≤ n ≤ 5 (i.e. T(0)=T(1)=T(2)=T(3)=T(4)=T(5)=c)

Assume n is a multiple of 6 Level Arg/
pb size

TC of 1
node

Nodes
per
level

Level TC

0 n c 1 c

1 n-6 c 5 5*c

2 n-2*6 c 52 52*c

…

i n-6i c 5i 5i*c

…

p=
n/6

0
(=n-6p)

c 5p 5p*c

25

C

. . .

. .

Stop at level p, when the subtree is T(0).
=> The problem size is 0, but the general
formula for the problem size, at level p is:
n-6p=> n-6p= 0 => p = n/6

…...
……

T(n) = c(1+5+52 + 53+ … +5i+…+5p)=
c(5(p+1)-1)/(5-1)=Θ(5p)= Θ(5n/6)

C

T(n)

T(n-6) T(n-6)

C C

C

C

CCCC

T(n-2*6) T(n-2*6)

T(0) T(0) T(0) T(0)

Each internal
node has 5
children

• Rounding up or down the size of subproblems does not affect Theta. All four
recurrences below have the same Theta:

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐 ,

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐 ,

𝑇 𝑁 = 𝑇
𝑁

3
+ 𝑇

𝑁

3
+ 𝑐

• See more solved examples later in the presentation. Look for page with title:

26

More practice/ Special cases

Tree Method for lower/upper bounds

• Draw the tree, notice the shape, see length of shortest and longest paths.
• Notice that:

– as long as the levels are full (all nodes have 2 children) the level TC is cn (the sum
of TC of the children equals the parent: (1/3)*p_TC+(2/3) *p_TC)

 Total TC for those: cn*log3n = Θ(nlgn)
– The number of incomplete levels should also be a multiple of lgn and the TC for

each of those levels will be less than cn
– => Guess that T(n) = O(nlgn)

• Use the substitution method to show T(n) = O(nlgn)
• If the recurrence was given with Θ instead of O, we could have shown

T(n) = Θ(nlgn)
– with O, de only know that: T(n) ≤ T(n/3)+T(2n/3)+cn
– The local TC could even be constant: T(n) = T(n/3)+T(2n/3) + c

• Exercise: Solve
– T1(n) = 2T1(n/3)+ cn (Why can we use cn instead of Θ(n) in T1(n) = 2T1(n/3)+ cn ?)
– T2(n) = 2T2(2n/3)+ cn (useful: lg3 ≈1.59)
– Use them to bound T(n). How does that compare to the analysis in this slide? (The

bounds are looser).

)()3/2()3/()(nOnTnTnT ++=

27

Common Recurrences Review

1. Halve problem in constant time :

T(n) = T(n/2) + c Θ(lg(n))

2. Halve problem in linear time :

T(n) = T(n/2) + n Θ(n) (~2n)

3. Break (and put back together) the problem into 2 halves in constant time:

T(n) = 2T(n/2) + c Θ(n) (~2n)

4. Break (and put back together) the problem into 2 halves in linear time:

T(n) = 2T(n/2) + n Θ(n lg(n))

5. Reduce the problem size by 1 in constant time:

T(n) = T(n−1) + c Θ(n)

6. Reduce the problem size by 1 in linear time:

T(n) = T(n-1) + n Θ(n2) 28

Master theorem

• We will use the Master Theorem from wikipedia as it covers
more cases:

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

• Check the above webpage and the notes handwritten in class.

• Discussion:
On Wikipedia, below the inadmissible equations there is the justification
pasted below.

However the cases given for the Master Theorem on Wikipedia, do not
include any ε in the discussion. Where does that ε come from? Can you do
math derivations that start from the formulation of the relevant case of the
Theorem and result in the ε and the inequality shown above?

29

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

30

Recurrences:
Induction Method

1. Guess the solution

2. Use induction to prove it.

3. Check it at the boundaries (recursion base cases)

Example: Find upper bound for:
1. Guess that T(n) = O(nlgn) =>

2. Prove that T(n) = O(nlgn) using T(n) <= cnlgn (for some c)
1. Assume it holds for all m<n, and prove it holds for n.

3. Assume base case (boundary): T(1) = 1.
Pick c and n0 s.t. it works for sufficient base cases and applying

the inductive hypotheses.

  nnTnT +=)2/(2)(

31

2. Prove that T(n) = O(nlgn), using the definition:

find c and n0 s.t. T(n) ≤ c*nlgn

(here: f(n) = T(n), g(n) = nlgn)

Show with induction: T(n) ≤ c*nlgn (for some c>0)

Recurrences: Induction Method
  nnTnT +=)2/(2)(

3. Base case (boundary):

Assume T(1) = 1
Find n0 s.t. the induction
holds for all n≥ n0.
n=1: 1=T(1) ≤ c*1*lg1 =c*0 =0
FALSE. => n0 cannot be 1.

n=2: T(2) = 2*T(1) + 2 = 2+2=4
Want T(2) ≤ c*2lg2=2c, True
for: c≥2

n=3: T(3)=2*T(1)+3=2+3=5
Want 5=T(3) ≤ c*3*lg3
True for: c≥2

Here we need 2 base cases
for the induction: n=2, and
n=3

32

Pick c = 2 (the largest of both 1 and 2).
Pick n0 = 2

     

1010)1(

lg

:

)1(lg

lg)1(lg)2lg(lg

)2/lg()2/lg(*)2/(**2

)2/lg(*2/**2)2/(2)(

=−−



−+=

=+−=+−=+−=

=+=+

++=

cccn

ncn

want

cnncn

ncnncnnncnnncn

nncnnnnc

nnncnnTnT

Recurrences: Induction Method
Various Issues

• Subtleties (stronger condition needed)
– Solve: 𝑇 𝑛 = 𝑇(Τ𝑛 2 + 𝑇 Τ𝑛 2 + 1 𝑤𝑖𝑡ℎ 𝑇 1 = 1 𝑎𝑛𝑑 𝑇 0 = 1

– Use a stronger condition: off by a constant, subtract a constant

• Avoiding pitfalls
– Wrong: In the above example, stop at T(n)≤cn+1 and conclude that T(n) =O(n)

– See also book example of wrong proof for is O(n)

• Making a good guess
– Solve:

– Find a similar recursion

– Use looser upper and lower bounds and gradually tighten them

• Changing variables
– Recommended reading, not required (page 86) 33

  nnTnT +=)2/(2)(

  nnTnT ++=)172/(2)(

Stronger Hypothesis for

Show T(n) = O(n) using the definition: find c and n0 s.t. T(n) ≤ c*n

(here: f(n) = T(n), g(n) = n). Use induction to show T(n) ≤ c*n

Inductive step: assume it holds for all m<n, show for n:

We’re stuck. We CANNOT say that T(n) =O(n) at this point. We must prove the
hypothesis exactly: T(n) ≤ cn (not: T(n)≤cn+1).

Use a stronger hypothesis: prove that T(n) ≤cn-d, for some const d>0:

34

    1)2/()2/()(++= nTnTnT

       

    11)2/2/(

12/2/1)2/()2/()(

+=++=

=++++=

cnnnc

ncncnTnTnT

       

   

101

:

121)2/2/(

12/2/1)2/()2/()(

=−

−

−+−=−++=

=+−+−++=

dd

dcn

want

ddcndnnc

dncdncnTnTnT

Extra material – Solve:

• Use the tree method to make a guess for:

• Use the induction method for the original recurrence
(with rounding down):

 )()4/(3)(2nnTnT +=

35

)()4/(3)(2nnTnT +=

 )()4/(3)(2nnTnT +=

More practice/ Special cases

36

Recurrences solved in following slides

Recurrences solved in
following slides:

T(n) = T(n-1)+c

T(n) = T(n-4)+c

T(n) = T(n-1)+cn

T(n) = T(n/2)+c

T(n) = T(n/2)+cn

T(n) = 2T(n/2)+c

T(n) = 2T(n/2)+8

T(n) = 2T(n/2)+cn

T(n) = 3T(n/2)+cn

T(n) = 3T(n/5)+cn
37

Recurrences left as
individual practice:

T(n) = 7T(n/3)+cn

T(n) = 7T(n/3)+cn3

T(n) = T(n/2)+n

See also “recurrences
practice” problems on the
Exams page.

T(N) = T(N-1) + c
fact(N)

38

c

c

c

…

c Time complexity of fact(N) ? T(N) = …

T(N) = T(N-1) + c
T(1) = c
T(0) = c

Levels: N
Each node has TC c =>
T(N) = c*N = Θ(N)

int fact(int N)

{

if (N <= 1) return 1;

return N*fact(N-1);

}

Time
complexity
tree:

T(N)

T(N-1)

T(2)

T(1)

T(N) = T(N-4) + c

39

c

c

c

…

c Time complexity of fact4(N) ? T(N) = …

T(N) = T(N-4) + c
T(3) = c
T(2) = c
T(1) = c
T(0) = c

Levels: ≈N/4
Each node has T c =>
T(N) = c*N/4 = Θ(N)

int fact4(int N)

{

if (N <= 1) return 1;

if (N == 2) return 2;

if (N == 3) return 6

return N*(N-1)*(N-2)*(N-3)*fact4(N-4);

}

Time
complexity
tree:

T(N)

T(N-4)

T(4)

T(0)

T(N) = T(N-1) + cN
selection_sort_rec(N)

40

cn

2c

c

…

c(n-1)

T(N) = T(N-1) + cN
T(1) = c
T(0) = c

Levels: N
Node at level i has TC c(N-i) =>
T(N) = cN+c(N-1)+…ci+..c = cN(N+1)/2 = Θ(N2)

int fact(int N, int st, int[] A,){

if (st >= N-1) return;

idx = min_index(A,st,N); // Θ(N-st)

A[st] <-> A[idx]

return sel_sort_rec(A,st+1,N);

}

Time
complexity
tree:

T(N)

T(N-1)

T(2)

T(1)

T(N) = T(N/2) + c

41

c

c

c

…

c
T(N) = T(N/2) + c
T(1) = c
T(0) = c

Levels: ≈lgN (from base case: N/2p=1 => p=lgN)
Each node has TC c =>
T(N) = c*lgN = Θ(lgN)

Time
complexity
tree:

T(N)

T(N/2)

T(2)

T(1)

T(N) = T(N/2) + cN

42

cN

2c

c

…

cN/2 T(N) = T(N/2) + cN
T(1) = c
T(0) = c

Levels: ≈lgN (from base case: N/2p=1 => p=lgN)
Node at level i has TC cN/2i =>
T(N) = c(N + N/2 + N/22 + … N/2i + … + N/2k) =

= cN(1 + 1/2 + 1/22 + … 1/2i + … + 1/2k) =
= cN[1 + (1/2) + (½)2 + … (½)i + … + (½)p] =
= cN*constant
= Θ(N)

Time
complexity
tree:

T(N)

T(N/2)

T(2)

T(1)

Recursion Tree for: T(n) = 2T(n/2)+c

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c 1 c

1 n/2 c 2 2c

2 n/4 c 4 4c

…

i n/2i c 2i 2ic

…

p=lgn 1
(=n/2p)

c 2p

(=n)
2kc

43

c

c

c

c

c c c

. . .

. .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC = c(1+2+22+23+…+2i+…+2p)=c2p+1/(2-1)

= 2c2p = 2cn = Θ(n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p= 1 => p = lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = c

Recursion Tree for: T(n) = 2T(n/2)+8

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n 8 1 8

1 n/2 8 2 2*8

2 n/4 8 4 4*8

…

i n/2i 8 2i 2i*8

…

k=lgn 1
(=n/2k)

8 2k

(=n)
2k*8

44

8

8

8

8

8 8 8

. . .

. .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

Tree TC = c(1+2+22+23+…+2i+…+2p)=8*2p+1/(2-1)

= 2*8*2p = 16n = Θ(n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p= 1 => 2p= n => p = lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = 8

8 8 8 8

If specific value is given instead of c, use that. Here c=8.

Recursion Tree for: T(n) = 2T(n/2)+cn

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

2p

(=n)
2p*c*n/2p

=c*n

45

. . .

. .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p => n/2p=1 => 2p=n => p= lgn

)1(T)1(T)1(T)1(T

Base case: T(1) = c

= 𝑐𝑛 𝑝 + 1 = 𝑐𝑛 1 + 𝑙𝑔𝑛
= 𝑐𝑛𝑙𝑔𝑛 + 𝑐𝑛 = 𝜃(𝑛𝑙𝑔𝑛)

Recursion Tree for T(n) = 3T(n/2)+cn

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 3 3*c*n/2
=(3/2)*c*n

2 n/4 c*n/4 9 (3/2)2*c*n

…

i n/2i c*n/2i 3i (3/2)i*c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3/2)p*c*n

46

. . .

. .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2p=> n/2p=1 => 2p=n => p = lgn

)1(T)1(T)1(T)1(T

2

n
c










2

n
T

c
)1(T

c
)1(T










4

n
T

4

n
c

Base case: T(1) = c

Total Tree TC for T(n) = 3T(n/2)+cn

47

)(23232*3

)2/3(:

2)2/3(*3]1)2/3(*)2/3[(2
1)2/3(

1)2/3(
*

)2/3(])2/3(...)2/3()2/3(1[*

)2/3...()2/3...()2/3()2/3()(

3lg3lg13lg113lg

13lg2lg3lg)2/3lg(lglglg

lglg
1lg

lg

0

lg2

lg2

ncncncncncnncn

nnnncuse

cncncncn

cncn

cncncncncnnT

ncn

nn
n

n

i

in

ni

=−=−=−=

======

−=−=
−

−
=

==++++=

=++++=

−+−

−−

+

=

Explanation: since we need Θ, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression):

)()*(

)2/3(:

))2/3(*())2/3(*)2/3(*(
1)2/3(

1)2/3(
*...

3lg13lg

13lg2lg3lg)2/3lg(lglglg

lg1lg
1lg

nnn

nnnncuse

nncn

ncn

nn
n

==

======

==
−

−
=

−

−−

+
+

Closed form

Recursion Tree for: T(n) = 2T(n/5)+cn
Level Arg/

pb size
TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/5 c*n/5 2 2*c*n/5
=(2/5)*cn

2 n/52 c*n/52 4 4*c*n/
=(2/5)icn

…

i n/5i c*n/5i 2i 2i*c*n/5i

=(2/5)icn

…

p=
log5n

1
(=n/5p)

c=c*1=
c*n/5p

2p

(=n)
2p*c*n/5p

=(2/5)pcn

48

. . .

. .

5

n
c

5

n
c

cn

25

n
c

25

n
c

25

n
c

25

n
c

)(nT










5

n
T 









5

n
T









25

n
T









25

n
T 








25

n
T

c c c c

Tree TC
(derivation similar to TC for T(n) = 3T(n/2)+cn)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/5p=> n/5p= 1 => 5p=n => p = log5n

)1(T)1(T)1(T)1(T

Total Tree TC for T(n) = 2T(n/5)+cn

49
)()(

)()()(...)(

)()3/5(
)5/2(1

1
*

)5/2()5/2(

])5/2(...)5/2()5/2(1[*

)5/2...()5/2...()5/2()5/2()(

0

log

0

log2

log2

5

5

5

nnT

nnTcnnTcnnT

Also

nOcncn

cncn

cn

cncncncncnnT

i

in

i

i

n

ni

=

=+=

==
−

=

==

=++++=

=++++=




==

Other Variations

• T(n) = 7T(n/3)+cn

• T(n) = 7T(n/3)+ cn5

– Here instead of (7/3) we will use (7/35)

• T(n) = T(n/2) + n

– The tree becomes a chain (only one node per level)

50

Additional materials

51

Practice/Strengthen understanding
Problem

• Look into the derivation if we had: T(1) = d ≠ c.

– In general, at most, it affects the constant for the dominant term.

52

Practice/Strengthen understanding
Answer

• Look into the derivation if
we had: T(1) = d ≠ c.

– At most, it affects the
constant for the dominant
term.

53

Level Arg/
pb size

TC of
1 node

Nodes
per
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

2p

(=n) =d*n

Tree TC = 𝑐𝑛𝑝 + 𝑑𝑛 = 𝑐𝑛𝑙𝑔𝑛 + 𝑑𝑛 = 𝜃(𝑛𝑙𝑔𝑛)

Permutations without repetitions
(Harder Example)

• Covering this material is subject to time availability

• Time complexity

– Tree, intuition (for moving the local TC in the recursive call TC), math
justification

– induction

54

More Recurrences
Extra material – not tested on

M1. Reduce the problem size by 1 in logarithmic time
– E.g. Check lg(N) items, eliminate 1

M2. Reduce the problem size by 1 in 𝑁2 time
– E.g. Check 𝑁2 pairs, eliminate 1 item

M3. Algorithm that:
– takes Θ(1) time to go over N items.
– calls itself 3 times on data of size N-1.
– takes Θ(1) time to combine the results.

M4. ** Algorithm that:
– calls itself N times on data of size N/2.
– takes Θ(1) time to combine the results.
– This generates a difficult recursion.

55

	Slide 1
	Slide 2: Background
	Slide 3: Recurrences
	Slide 4: Solving Recurrences Methods
	Slide 5: Recurrence - Recursion Tree Relationship
	Slide 6: Recursion Tree for: T(n) = 2T(n/2)+c
	Slide 7: Recursion Tree for: T(n) = 2T(n/2)+8
	Slide 8: Recursion Tree for: T(n) = 2T(n/2)+cn
	Slide 9: Recursion Tree for T(n) = 3T(n/2)+c
	Slide 10: Recursion Tree for T(n) = 3T(n/2)+cn
	Slide 11: Total Tree TC for T(n) = 3T(n/2)+cn
	Slide 12: Recursion Tree for: T(n) = 2T(n/5)+cn
	Slide 13: Total Tree TC for T(n) = 2T(n/5)+cn
	Slide 14: Code => Recurrence
	Slide 15: Code => Recurrence => Θ
	Slide 16: Compare
	Slide 17: Code =>recurrence
	Slide 18: Code => recurrence
	Slide 19: Recurrence => Code Answers
	Slide 20: Recurrences: Recursion-Tree Method
	Slide 21: Recurrence - Recursion Tree Relationship
	Slide 22
	Slide 23: T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c
	Slide 24: T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c
	Slide 25: T(n) = 5T(n-6)+c T(n) = c for all 0 ≤ n ≤ 5 (i.e. T(0)=T(1)=T(2)=T(3)=T(4)=T(5)=c) Assume n is a multiple of 6
	Slide 26
	Slide 27: Tree Method for lower/upper bounds
	Slide 28: Common Recurrences Review
	Slide 29: Master theorem
	Slide 30
	Slide 31: Recurrences: Induction Method
	Slide 32: Recurrences: Induction Method
	Slide 33: Recurrences: Induction Method Various Issues
	Slide 34: Stronger Hypothesis for
	Slide 35: Extra material – Solve:
	Slide 36: More practice/ Special cases
	Slide 37: Recurrences solved in following slides
	Slide 38: T(N) = T(N-1) + c fact(N)
	Slide 39: T(N) = T(N-4) + c
	Slide 40: T(N) = T(N-1) + cN selection_sort_rec(N)
	Slide 41: T(N) = T(N/2) + c
	Slide 42: T(N) = T(N/2) + cN
	Slide 43: Recursion Tree for: T(n) = 2T(n/2)+c
	Slide 44: Recursion Tree for: T(n) = 2T(n/2)+8
	Slide 45: Recursion Tree for: T(n) = 2T(n/2)+cn
	Slide 46: Recursion Tree for T(n) = 3T(n/2)+cn
	Slide 47: Total Tree TC for T(n) = 3T(n/2)+cn
	Slide 48: Recursion Tree for: T(n) = 2T(n/5)+cn
	Slide 49: Total Tree TC for T(n) = 2T(n/5)+cn
	Slide 50: Other Variations
	Slide 51: Additional materials
	Slide 52: Practice/Strengthen understanding Problem
	Slide 53: Practice/Strengthen understanding Answer
	Slide 54: Permutations without repetitions (Harder Example)
	Slide 55: More Recurrences Extra material – not tested on

