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Background 
• Solving Summations 

– Needed for the Tree Method

• Math substitution
– Needed for Methods: Tree and Substitution(induction)
– E.g. If     T(n) = 3T(n/8) + 4n2.5lgn, 

T(n/8) = ………………………………
T(n-1) = ………………………………

• Theory on trees
– Given tree height & branching factor, compute:

nodes per level
total nodes in tree

• Logarithms
– Needed for the Tree Method

• Notation: TC = Time Complexity (cost may also be used instead of time complexity)
• We will use different methods than what was done for solving recurrences in CSE 2315, 

but one may still benefit from reviewing that material.
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Recurrences
• Recursive algorithms

– It may not be clear what the complexity is, by just looking at the 
algorithm.

– To find their complexity, we need to:
• Express the TC of the algorithm as a recurrence formula. E.g.:       

f(n) = n + f(n-1)
• Find the complexity of the recurrence: 

– Expand it to a summation with no recursive term.
– Find a concise expression (or upper bound), E(n), for the 

summation.
– Find 𝛩,ideally, or O (big-Oh) for E(n).

• Recurrence formulas may be encountered in other situations:
– Compute the number of nodes in certain trees.
– Express the complexity of non-recursive algorithms (e.g. selection sort).
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Solving Recurrences Methods

• The Master Theorem

• The Recursion-Tree Method

– Useful for guessing the bound.

• The Induction Method – not covered
– Guess the bound, use induction to prove it.

– Note that the book calls this the substitution method, but I prefer to call it the induction method
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Recurrence - Recursion Tree 
Relationship

T(1) =  c

T(n ) =  a*T( n/b )+ cn
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Number of subproblems =>
Number of children of a node 
in the recursion tree. =>
Affects the number of nodes 
per level. At level i there will 
be ai nodes. 
Affects the level TC.

Size of a subproblem =>
Affects the number of recursive 
calls (frame stack max height and 
tree height)
Recursion stops at level p for which 
the pb size is 1 (the node is labelled 
T(1) ) => n/bp = 1 => 
Last level, p, will be: p = logbn
(assuming the base case is for T(1) ).

The local TC at the node cn

…
a

c(n/b)

T(n)

c(n/b) c(n/b)

c(n/b2)

…

T(n/b)

T(n/b2)

Problem size

.

.

.
T(n/bp)

T(1)
cc

.

.

.

TC = time complexity



Recursion Tree for:  T(n) = 2T(n/2)+c

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c 1 c

1 n/2 c 2 2c

2 n/4 c 4 4c

…

i n/2i c  2i 2ic

…

p=lgn 1
(=n/2p)

c  2p
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2kc
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Tree TC  = c(1+2+22+23+…+2i+…+2p)=c2p+1/(2-1) 

= 2c2p = 2cn = Θ(n)

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p= 1 =>  p = lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = c



Recursion Tree for:  T(n) = 2T(n/2)+8

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n 8 1 8

1 n/2 8 2 2*8

2 n/4 8 4 4*8

…

i n/2i 8  2i 2i*8

…
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8  2k
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Tree TC = c(1+2+22+23+…+2i+…+2p)=8*2p+1/(2-1) 

= 2*8*2p = 16n = Θ(n)

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p= 1 => 2p= n => p = lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = 8

8 8 8 8 

If specific value is given instead of c, use that. Here c=8.



Recursion Tree for:  T(n) = 2T(n/2)+cn

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

2p

(=n)
2p*c*n/2p

=c*n
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Tree TC 

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p => n/2p=1 => 2p=n  =>  p= lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = c

= 𝑐𝑛 𝑝 + 1 = 𝑐𝑛 1 + 𝑙𝑔𝑛
= 𝑐𝑛𝑙𝑔𝑛 + 𝑐𝑛 = 𝜃(𝑛𝑙𝑔𝑛)



Recursion Tree for T(n) = 3T(n/2)+c 

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c

1 n/2 c*n/2 3 3*c
=(3)*c

2 n/4 c*n/4 9 (3)2*c

…

i n/2i c*n/2i 3i (3)i*c

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3)p*c
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Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p=1 =>  2p=n =>  p = lgn
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Base case:  T(1) = c



Recursion Tree for T(n) = 3T(n/2)+cn

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 3 3*c*n/2
=(3/2)*c*n

2 n/4 c*n/4 9 (3/2)2*c*n

…

i n/2i c*n/2i 3i (3/2)i*c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3/2)p*c*n

10

. . . 

. . . . . . . . . . . . . . . . . . . . .

2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p=1 =>  2p=n =>  p = lgn
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Base case:  T(1) = c



Total Tree TC for T(n) = 3T(n/2)+cn
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Explanation: since we need Θ, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression): 

. . . = 𝑐𝑛 ∗
(3/2)lg 𝑛+1 − 1

(3/2) − 1
= Θ(𝑛 ∗ (3/2) ∗ (3/2)lg 𝑛) = Θ(𝑛 ∗ (3/2)lg 𝑛)

𝑢𝑠𝑒: 𝑐 lg 𝑛 = 𝑛lg 𝑐 => (3/2)lg 𝑛 = 𝑛lg(3/2) = 𝑛lg 3−lg 2 = 𝑛lg 3−1 =>
= Θ(𝑛 ∗ 𝑛lg 3−1) = Θ(𝑛lg 3)

Closed form 



Recursion Tree for:  T(n) = 2T(n/5)+cn
Level Arg/

pb size
TC of
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/5 c*n/5 2 2*c*n/5
=(2/5)*cn

2 n/52 c*n/52 4 4*c*n/
=(2/5)icn

…

i n/5i c*n/5i 2i 2i*c*n/5i

=(2/5)icn

…

p=
log5n
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Tree TC 
(derivation similar to TC for T(n) = 3T(n/2)+cn )

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/5p=> n/5p= 1 => 5p=n =>  p = log5n
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Total Tree TC for T(n) = 2T(n/5)+cn
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Code => Recurrence

int foo(int N){

int a,b,c;

if(N<=3) return 1500; // Note N<=3

a = 2*foo(N-1);

// a = foo(N-1)+foo(N-1);

printf("A");

b = foo(N/2);

c = foo(N-1);

return a+b+c;

}

Base case:           T(  __ ) = __________

Recursive case: T( __ ) = ___________________
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)
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In the recursive case of the recurrence 
formula capture the number of times 
the recursive call ACTUALLY EXECUTES 
as you run the instructions in the 
function.



Code => Recurrence => Θ

void bar(int N){

int i,k,t;

if(N<=1) return;

bar(N/5);

for(i=1;i<=5;i++){

bar(N/5);

}

for(i=1;i<=N;i++){

for(k=N;k>=1;k--)

for(t=2;t<2*N;t=t+2)

printf("B");

}   

bar(N/5);

}

T(N) = …………………………………
Solve T(N)
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In the recursive case of the recurrence 
formula capture the number of times 
the recursive call ACTUALLY EXECUTES 
as you run the instructions in the 
function.



Compare
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void foo1(int N){ 

if (N <= 1) return;

for(int i=1; i<=N; i++){ 

foo1(N-1);

}

}

T(0)=T(1) = c

T(N) = N*T(N-1) + cN

void foo2(int N){ 

if (N <= 5) return;

for(int i=1; i<=N; i++){

printf("A");

}

foo2(N-1); //outside of the loop

}

T(N) = c for all 0≤N≤5  (BaseCase(s))

T(N) = T(N-1) + cN (Recursive Case)

int foo3(int N){ 

if (N <= 20) return 500;

for(int i=1; i<=N; i++){ 

return foo3(N-1);

// No loop. Returns after the first iteration. 

}

}

T(N) = c for all 0≤N≤20   Do not confuse what the function returns with its time 

complexity. For the base case, c is not 500. At most, c is 2 (from the 2 

instructions: one comparison, N<=20, and one return, return 500)

T(N) = T(N-1) + c

In the recursive case of the recurrence 
formula captures the number of times 
the recursive call ACTUALLY EXECUTES 
as you run the instructions in the 
function.  E.g. pay attention to 
2*foo(N/3) vs foo(N/3) + foo(N/3)



Code =>recurrence
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int search(int A[], int L, int R, int v){

int m = (L+R)/2;

if (L > R) return -1;

if (v == A[m]) return m;

if (L == R) return -1;

if (v < A[m]) return search(A,L,m-1,v);  

else          return search(A,m+1,R,v);  

} 

(Use:  N = R-L+1)

Here, for the same value of N, the behavior depends also on data in A and val. 

Best case T(N) = c => search is Θ(1) in best case

Worst case: T(N) = T(N/2) + c  => T(N) = Θ(lg(N)) => search is Θ(lg(N))in worst case

 We will report in general: search is O(lg(N))



Code => recurrence
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int weird(int A[], int N){

if (N<=4) return 100;

if (N%5==0) return weird(A,N/5);  

else        return weird(A,N-4)+weird(A, N-4);  

} 

Here, the behavior depends on N so we can explicitly capture that in the 

recurrence formulas: 

Base case(s): T(N) = c for all 0≤N≤4    (BC)

Recursive case(s): 

T(N) = T(N/5)+c for all N>4 that are multiples of 5     (RC1)

T(N) =  2*T(N-4) + c for all other N             (RC2)

For any N, in order to solve, we need to go through a mix of the 2 recursive 

cases => cannot easily solve. => try to find lower and upper bounds. 

Note that RC1 has the best behavior: only one recurrence and smallest subproblem

size (i.e. N/5) => use this for a lower bound =>

Tlower(N) = T(N/5)+c = Θ(log5N) , (and T(N)≥ Tlower(N)) => T(N) = Ω(log5N) 

Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem

size (i.e. N-4) => use this for an upper bound =>

Tupper(N) = 2*T(N-4)+c = Θ(2
N/4) , (and T(N)≤Tupper(N)=Θ(2

N/4) ) => T(N) = O(2N/4)  

We have Ω and O for T(N), but we cannot compute Θ for it.



Recurrence => Code
Answers

• Give a piece of code/pseudocode for which 
the time complexity recursive formula is: 

– T(1) = c   and

– T(N) = N*T(N/2) + cN
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void foo(int N){ 

if (N <= 1) return;

for(int i=1; i<=N; i++)

foo(N/2);

}



Recurrences:
Recursion-Tree Method

1. Build the tree & fill-out the table
2. Compute TC per level
3. Compute number of levels (find last level as a function of N)
4. Compute total over levels.

* Find closed form of that summation.

Example 1 : Solve 

Example 2 : Solve 

  )()4/(3)( 2nnTnT +=

)()3/2()3/()( nOnTnTnT ++=
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Recurrence - Recursion Tree 
Relationship

T(1) =  c

T(n ) =  a*T( n/b )+ cn

21

Number of subproblems =>
Number of children of a node 
in the recursion tree. =>
Affects the number of nodes 
per level. At level i there will 
be ai nodes. 
Affects the level TC.

Size of a subproblem =>
Affects the number of recursive 
calls (frame stack max height and 
tree height)
Recursion stops at level p for which 
the pb size is 1 (the node is labelled 
T(1) ) => n/bp = 1 => 
Last level, p, will be: p = logbn
(assuming the base case is for T(1) ).

The local TC at the node cn

…
a

c(n/b)

T(n)

c(n/b) c(n/b)

c(n/b2)

…

T(n/b)

T(n/b2)

Problem size

.

.

.
T(n/bp)

T(1)
cc

.

.

.



Level Arg/
pb size

TC of  1 
node

Nodes
per 
level

Level TC

0

1

2

…

i

…

p=

22Work it out by hand in class.
Draw tree, fill out table.

T(n) = 7T(n/5)+cn3 ,   If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c



T(n) = 7T(n/5)+cn3 ,   If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c Level Arg/
pb size

TC of  1 
node

Nodes
per 
level

Level TC

0 n cn 3 1 c*n3

1 n/5 c(n/5) 3 7 7*c*(n/5)3

=cn3 (7/53)

2 n/52 c(n/52) 3 72 72*c*(n/52) 3

=cn3 (7/53)2

…

i n/5i c(n/5i) 3 7i 7i*c*(n/5i) 3

=cn3 (7/53)i

…

p=
Log5n

1
(=n/5p)

c=c*1=
c(n/5p) 3

7p 7p*c*(n/5p)3

=cn3 (7/53)p
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Stop at level p,  when the 
subtree is T(1). => The 
problem size is 1, but the 
general formula for the 
problem size, at level p is:   
n/5p=> n/5p= 1 =>  p = log5n
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Tree TC: 𝑇 𝑛 = σ𝑖=0
𝑙𝑜𝑔5𝑛 𝑐𝑛3(

7

53
)𝑖 = 𝑐𝑛3σ𝑖=0

𝑙𝑜𝑔5𝑛(
7

53
)𝑖 =

𝑐𝑛3
1−(7/125)1+𝑙𝑜𝑔5𝑛

1−(7/125)
< 𝑐𝑛3

1

1−7/125
= Θ 𝑛3 ⇒ 𝑇 𝑛 = 𝑂 𝑛3

But 𝑇 𝑛 = Ω 𝑛3 ⇒ 𝑇 𝑛 = Θ(𝑛3)

Each internal 
node has 7 
children
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T(n) = 7T(n/5)+cn3 ,   If n is not a multiple of 5, use round down for n/5

T(1) = c, T(0) = c



T(n) = 5T(n-6)+c 
T(n) = c for all 0 ≤ n ≤ 5   (i.e. T(0)=T(1)=T(2)=T(3)=T(4)=T(5)=c )

Assume n is a multiple of 6 Level Arg/
pb size

TC of  1 
node

Nodes
per 
level

Level TC

0 n c 1 c

1 n-6 c 5 5*c

2 n-2*6 c 52 52*c

…

i n-6i  c 5i 5i*c

…

p=
n/6

0
(=n-6p)

c  5p 5p*c

25

C

. . . 

. . . . . . . . . . . . . . . . . . . . .

Stop at level p,  when the subtree is T(0). 
=> The problem size is 0, but the general 
formula for the problem size, at level p is:   
n-6p=> n-6p= 0 =>  p = n/6

…...
……

T(n) = c(1+5+52 + 53+ … +5i+…+5p )= 
c(5(p+1)-1)/(5-1)=Θ(5p)= Θ(5n/6)

C

T(n)

T(n-6) T(n-6)

C C

C

C

CCCC

T(n-2*6) T(n-2*6)

T(0) T(0) T(0) T(0)

Each internal 
node has 5 
children



• Rounding up or down the size of subproblems does not affect Theta. All  four 
recurrences below have the same Theta:  

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐 ,

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐

𝑇 𝑁 = 2𝑇
𝑁

3
+ 𝑐 ,

𝑇 𝑁 = 𝑇
𝑁

3
+ 𝑇

𝑁

3
+ 𝑐

• See more solved examples later in the presentation.  Look for page with title:

26

More practice/ Special cases



Tree Method for lower/upper bounds

• Draw the tree, notice the shape, see length of shortest and longest paths.
• Notice that:

– as long as the levels are full (all nodes have 2 children) the level TC is cn (the sum 
of TC of the children equals the parent: (1/3)*p_TC+(2/3) *p_TC) 

 Total TC for those: cn*log3n = Θ(nlgn)
– The number of incomplete levels should also be a multiple of lgn and the TC for 

each of those levels will be less than cn
– => Guess that T(n) = O(nlgn) 

• Use the substitution method to show T(n) = O(nlgn)
• If the recurrence was given with Θ instead of O, we could have shown    

T(n) = Θ(nlgn)
– with O, de only know that: T(n) ≤ T(n/3)+T(2n/3)+cn
– The local TC could even be constant: T(n) = T(n/3)+T(2n/3) + c

• Exercise: Solve 
– T1(n) = 2T1(n/3)+ cn (Why can we use cn instead of Θ(n) in T1(n) = 2T1(n/3)+ cn ?)
– T2(n) = 2T2(2n/3)+ cn (useful: lg3 ≈1.59)
– Use them to bound T(n). How does that compare to the analysis in this slide? (The 

bounds are looser).

)()3/2()3/()( nOnTnTnT ++=

27



Common Recurrences Review

1. Halve problem in constant time : 

T(n) = T(n/2) + c Θ( lg(n) )        

2. Halve problem in linear time : 

T(n) = T(n/2) + n    Θ(n)                   (~2n)

3. Break (and put back together) the problem into 2 halves in constant time:                     

T(n) = 2T(n/2) + c      Θ(n) (~2n)

4. Break (and put back together) the problem into 2 halves in linear time:                               

T(n) = 2T(n/2) + n         Θ( n lg(n) )

5. Reduce the problem size by 1 in constant time:

T(n) = T(n−1) + c Θ( n)

6. Reduce the problem size by 1 in linear time:

T(n) = T(n-1) + n Θ( n2 ) 28



Master theorem

• We will use the Master Theorem from wikipedia as it covers 
more cases:

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

• Check the above webpage and the notes handwritten in class. 

• Discussion: 
On Wikipedia, below the inadmissible equations there is the justification 
pasted below. 

However the cases given for the Master Theorem on Wikipedia, do not 
include any ε in the discussion. Where does that ε come from? Can you do 
math derivations that start from the formulation of the relevant case of the 
Theorem and result in the ε and the inequality shown above?

29

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
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Recurrences:
Induction Method

1. Guess the solution

2. Use induction to prove it.

3. Check it at the boundaries (recursion base cases)

Example: Find upper bound for: 
1. Guess that T(n) = O(nlgn) => 

2. Prove that T(n) = O(nlgn) using T(n) <= cnlgn (for some c)
1. Assume it holds for all m<n, and prove it holds for n.

3. Assume base case (boundary): T(1) = 1. 
Pick c and n0 s.t. it works for sufficient base cases and applying 

the inductive hypotheses.

  nnTnT += )2/(2)(

31



2. Prove that T(n) = O(nlgn), using the definition: 

find c and n0 s.t. T(n) ≤ c*nlgn

(here: f(n) = T(n), g(n) = nlgn)

Show with induction: T(n) ≤ c*nlgn (for some c>0)

Recurrences: Induction Method
  nnTnT += )2/(2)(

3. Base case (boundary): 

Assume  T(1) = 1
Find n0 s.t. the induction 
holds for all n≥ n0.
n=1: 1=T(1) ≤ c*1*lg1 =c*0 =0
FALSE. => n0 cannot be 1.

n=2: T(2) = 2*T(1) + 2 = 2+2=4
Want T(2) ≤ c*2lg2=2c, True 
for: c≥2

n=3: T(3)=2*T(1)+3=2+3=5
Want 5=T(3) ≤ c*3*lg3
True for: c≥2

Here we need 2 base cases 
for the induction: n=2, and 
n=3

32

Pick c = 2 (the largest of both 1 and 2). 
Pick n0 = 2 

     

1010)1(

lg

:

)1(lg

lg)1(lg)2lg(lg

)2/lg()2/lg(*)2/(**2

)2/lg(*2/**2)2/(2)(

=−−



−+=

=+−=+−=+−=

=+=+

++=

cccn

ncn

want

cnncn

ncnncnnncnnncn

nncnnnnc

nnncnnTnT



Recurrences: Induction Method
Various Issues

• Subtleties (stronger condition needed)
– Solve:  𝑇 𝑛 = 𝑇( Τ𝑛 2 + 𝑇 Τ𝑛 2 + 1 𝑤𝑖𝑡ℎ 𝑇 1 = 1 𝑎𝑛𝑑 𝑇 0 = 1

– Use a stronger condition: off by a constant, subtract a constant

• Avoiding pitfalls
– Wrong: In the above example, stop at T(n)≤cn+1 and conclude that T(n) =O(n)

– See also book example of wrong proof for                                            is O(n)

• Making a good guess
– Solve:

– Find a similar recursion

– Use looser upper and lower bounds and gradually tighten them

• Changing variables
– Recommended reading, not required (page 86) 33

  nnTnT += )2/(2)(

  nnTnT ++= )172/(2)(



Stronger Hypothesis for

Show T(n) = O(n) using the definition: find c and n0 s.t. T(n) ≤ c*n

(here: f(n) = T(n), g(n) = n). Use induction to show T(n) ≤ c*n

Inductive step: assume it holds for all m<n, show for n:

We’re stuck. We CANNOT say that T(n) =O(n) at this point. We must prove the 
hypothesis exactly: T(n) ≤ cn (not:  T(n)≤cn+1).

Use a stronger hypothesis: prove that T(n) ≤cn-d, for some const d>0:

34

    1)2/()2/()( ++= nTnTnT

       

    11)2/2/(

12/2/1)2/()2/()(

+=++=

=++++=

cnnnc

ncncnTnTnT

       

   

101

:

121)2/2/(

12/2/1)2/()2/()(

=−

−

−+−=−++=

=+−+−++=

dd

dcn

want

ddcndnnc

dncdncnTnTnT



Extra material – Solve:

• Use the tree method to make a guess for:

• Use the induction method for the original recurrence 
(with rounding down):

  )()4/(3)( 2nnTnT +=
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)()4/(3)( 2nnTnT +=

  )()4/(3)( 2nnTnT +=



More practice/ Special cases

36



Recurrences solved in following slides

Recurrences solved in 
following slides:

T(n) = T(n-1)+c

T(n) = T(n-4)+c

T(n) = T(n-1)+cn

T(n) = T(n/2)+c

T(n) = T(n/2)+cn

T(n) = 2T(n/2)+c

T(n) = 2T(n/2)+8

T(n) = 2T(n/2)+cn

T(n) = 3T(n/2)+cn

T(n) = 3T(n/5)+cn
37

Recurrences left as 
individual practice:

T(n) = 7T(n/3)+cn

T(n) = 7T(n/3)+cn3

T(n) = T(n/2)+n

See also “recurrences 
practice” problems on the 
Exams page.



T(N) = T(N-1) + c
fact(N)

38

c

c

c

…

c Time complexity of fact(N) ? T(N) = …

T(N) = T(N-1) + c
T(1) = c
T(0) = c

Levels: N
Each node has TC c => 
T(N) = c*N = Θ(N)

int fact(int N)

{

if (N <= 1) return 1;

return N*fact(N-1);

} 

Time 
complexity  
tree:

T(N)

T(N-1)

T(2)

T(1)



T(N) = T(N-4) + c

39

c

c

c

…

c Time complexity of fact4(N) ? T(N) = …

T(N) = T(N-4) + c
T(3) = c
T(2) = c
T(1) = c
T(0) = c

Levels: ≈N/4
Each node has T c => 
T(N) = c*N/4 = Θ(N)

int fact4(int N)

{

if (N <= 1) return 1;

if (N == 2) return 2;

if (N == 3) return 6

return N*(N-1)*(N-2)*(N-3)*fact4(N-4);

} 

Time 
complexity  
tree:

T(N)

T(N-4)

T(4)

T(0)



T(N) = T(N-1) + cN
selection_sort_rec(N)

40

cn

2c

c

…

c(n-1)

T(N) = T(N-1) + cN
T(1) = c
T(0) = c

Levels: N
Node at level i has TC c(N-i) => 
T(N) = cN+c(N-1)+…ci+..c = cN(N+1)/2 = Θ(N2)

int fact(int N, int st, int[] A, ){

if (st >= N-1) return;

idx = min_index(A,st,N); // Θ(N-st)

A[st] <-> A[idx]

return sel_sort_rec(A,st+1,N);

} 

Time 
complexity  
tree:

T(N)

T(N-1)

T(2)

T(1)



T(N) = T(N/2) + c

41

c

c

c

…

c
T(N) = T(N/2) + c
T(1) = c
T(0) = c

Levels: ≈lgN ( from base case: N/2p=1 => p=lgN)
Each node has TC c => 
T(N) = c*lgN = Θ(lgN)

Time 
complexity  
tree:

T(N)

T(N/2)

T(2)

T(1)



T(N) = T(N/2) + cN

42

cN

2c

c

…

cN/2 T(N) = T(N/2) + cN
T(1) = c
T(0) = c

Levels: ≈lgN ( from base case: N/2p=1 => p=lgN)
Node at level i has TC cN/2i => 
T(N) = c(N + N/2 + N/22 + … N/2i + … + N/2k) = 

= cN(1 + 1/2 + 1/22 + … 1/2i + … + 1/2k) = 
= cN[1 + (1/2) + (½)2 + … (½)i + … + (½)p] = 
= cN*constant
= Θ(N)

Time 
complexity  
tree:

T(N)

T(N/2)

T(2)

T(1)



Recursion Tree for:  T(n) = 2T(n/2)+c

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c 1 c

1 n/2 c 2 2c

2 n/4 c 4 4c

…

i n/2i c  2i 2ic

…

p=lgn 1
(=n/2p)

c  2p

(=n)
2kc

43

c

c

c

c

c c c

. . . 

. . . . . . . . . . . . . . . . . . . . .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC  = c(1+2+22+23+…+2i+…+2p)=c2p+1/(2-1) 

= 2c2p = 2cn = Θ(n)

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p= 1 =>  p = lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = c



Recursion Tree for:  T(n) = 2T(n/2)+8

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n 8 1 8

1 n/2 8 2 2*8

2 n/4 8 4 4*8

…

i n/2i 8  2i 2i*8

…

k=lgn 1
(=n/2k)

8  2k

(=n)
2k*8
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8

8 

8 

8 

8 8 8 

. . . 

. . . . . . . . . . . . . . . . . . . . .

)(nT










2

n
T 









2

n
T










4

n
T










4

n
T 









4

n
T

Tree TC = c(1+2+22+23+…+2i+…+2p)=8*2p+1/(2-1) 

= 2*8*2p = 16n = Θ(n)

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p= 1 => 2p= n => p = lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = 8

8 8 8 8 

If specific value is given instead of c, use that. Here c=8.



Recursion Tree for:  T(n) = 2T(n/2)+cn

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

2p

(=n)
2p*c*n/2p

=c*n
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2

n
c

2

n
c

cn

4

n
c

4

n
c

4

n
c

4

n
c

)(nT



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


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

2

n
T










4

n
T










4

n
T 









4

n
T

c c c c

Tree TC 

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p => n/2p=1 => 2p=n  =>  p= lgn

)1(T )1(T )1(T )1(T

Base case:  T(1) = c

= 𝑐𝑛 𝑝 + 1 = 𝑐𝑛 1 + 𝑙𝑔𝑛
= 𝑐𝑛𝑙𝑔𝑛 + 𝑐𝑛 = 𝜃(𝑛𝑙𝑔𝑛)



Recursion Tree for T(n) = 3T(n/2)+cn

Level Arg/
pb size

TC of  
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 3 3*c*n/2
=(3/2)*c*n

2 n/4 c*n/4 9 (3/2)2*c*n

…

i n/2i c*n/2i 3i (3/2)i*c*n

…

p=lgn 1
(=n/2p)

c=c*1=
c*n/2p

3p

(≠n)
(3/2)p*c*n
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c c c c

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/2p=> n/2p=1 =>  2p=n =>  p = lgn

)1(T )1(T )1(T )1(T

2

n
c










2

n
T

c
)1(T

c
)1(T










4

n
T

4

n
c

Base case:  T(1) = c



Total Tree TC for T(n) = 3T(n/2)+cn
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Explanation: since we need Θ, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression): 
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Closed form 



Recursion Tree for:  T(n) = 2T(n/5)+cn
Level Arg/

pb size
TC of
1 node

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/5 c*n/5 2 2*c*n/5
=(2/5)*cn

2 n/52 c*n/52 4 4*c*n/
=(2/5)icn

…

i n/5i c*n/5i 2i 2i*c*n/5i

=(2/5)icn

…

p=
log5n

1
(=n/5p)

c=c*1=
c*n/5p

2p

(=n)
2p*c*n/5p

=(2/5)pcn
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Tree TC 
(derivation similar to TC for T(n) = 3T(n/2)+cn )

Stop at level p,  when the subtree is T(1). 
=> The problem size is 1, but the general 
formula for the problem size, at level p is:   
n/5p=> n/5p= 1 => 5p=n =>  p = log5n
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Total Tree TC for T(n) = 2T(n/5)+cn
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Other Variations

• T(n) = 7T(n/3)+cn

• T(n) = 7T(n/3)+ cn5

– Here instead of (7/3) we will use (7/35)

• T(n) = T(n/2) + n

– The tree becomes a chain (only one node per level) 
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Additional materials
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Practice/Strengthen understanding
Problem

• Look into the derivation if we had: T(1) = d ≠ c.

– In general, at most, it affects the constant for the dominant term.
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Practice/Strengthen understanding
Answer

• Look into the derivation if 
we had: T(1) = d ≠ c.

– At most, it affects the 
constant for the dominant 
term.
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Level Arg/
pb size

TC of
1 node 

Nodes
per 
level

Level TC

0 n c*n 1 c*n

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=c*n

…

i n/2i c*n/2i 2i 2i*c*n/2i

=c*n

…

p=lgn 1
(=n/2p)

2p

(=n) =d*n

Tree TC = 𝑐𝑛𝑝 + 𝑑𝑛 = 𝑐𝑛𝑙𝑔𝑛 + 𝑑𝑛 = 𝜃(𝑛𝑙𝑔𝑛)



Permutations without repetitions
(Harder Example)

• Covering this material is subject to time availability

• Time complexity

– Tree, intuition (for moving the local TC in the recursive call TC), math 
justification

– induction
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More Recurrences 
Extra material – not tested on

M1. Reduce the problem size by 1 in logarithmic time
– E.g. Check lg(N) items, eliminate 1

M2. Reduce the problem size by 1 in 𝑁2 time
– E.g. Check 𝑁2 pairs, eliminate 1 item

M3. Algorithm that:
– takes Θ(1) time to go over N items.
– calls itself 3 times on data of size N-1.
– takes Θ(1) time to combine the results.

M4. ** Algorithm that:
– calls itself N times on data of size N/2.
– takes Θ(1) time to combine the results.
– This generates a difficult recursion.
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