9/24/2024

Recurrences:
Methods and Examples

CSE 3318 — Algorithms and Data Structures
Alexandra Stefan

University of Texas at Arlington

Background

Solving Summations
— Needed for the Tree Method

Math substitution

— Needed for Methods: Tree and Substitution(induction)
— E.g.If T(n)=3T(n/8) + 4n?>Ign,
T(N/8) = oo
T(N-1) = oo
Theory on trees

— Given tree height & branching factor, compute:
nodes per level
total nodes in tree

Logarithms
— Needed for the Tree Method

Notation: TC = Time Complexity (cost may also be used instead of time complexity)

We will use different methods than what was done for solving recurrences in CSE 2315,
but one may still benefit from reviewing that material.

Recurrences

Recursive algorithms

— It may not be clear what the complexity is, by just looking at the
algorithm.

— To find their complexity, we need to:

* Express the TC of the algorithm as a recurrence formula. E.g.:
f(n) = n + f(n-1)

* Find the complexity of the recurrence:
— Expand it to a summation with no recursive term.

— Find a concise expression (or upper bound), E(n), for the
summation.

— Find 0,ideally, or O (big-Oh) for E(n).

Recurrence formulas may be encountered in other situations:
— Compute the number of nodes in certain trees.
— Express the complexity of non-recursive algorithms (e.g. selection sort).

Solving Recurrences Methods

e The Master Theorem

 The Recursion-Tree Method
— Useful for guessing the bound.

e The Induction Method — not covered

— Guess the bound, use induction to prove it.
— Note that the book calls this the substitution method, but | prefer to call it the induction method

Recurrence - Recursion Tree
Relationship
T(1) = c

Problem size The local TC at the node T(n)
/ T(n/b?)

Number of subproblems => Size of a subproblem => @

Number of children of a node | | Affects the number of recursive

in the recursion tree. => calls (frame stack max height and

Affects the number of nodes tree height)

per level. At level i there will Recursion stops at level p for which .

be a' nodes. the pb size is 1 (the node is labelled . .

Affects the level TC. T(1))=>n/bP=1=> T(n/bP
Last level, p, will be: p = log,n C C
(assuming the base case is for T(1)). T(1)

TC = time complexity

Recursion Tree for: T(n) = 2T(n/2)+c

Base case: T(1) =c

Level | Arg/ TCof | Nodes
pb size | 1 node | per
level
0 n o 1 o

T (15 i T(1) TQ j

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2P=1=> p =Ign

1 n/2 C 2 2¢
2 n/4 C 4 4c
[n/2! C 2! 2ic
T(D)
C)—p=lgn 1 C 2°P 2kc
(=n/2r) (=n)

Tree TC = c(1+2+22+23+...+2i+...+2p)=c2p\+z/(2-1)
= 2¢c2P =2cn = 0O(n)

Recursion Tree for: T(n) =2T(n/2)+8

If specific value is given instead of ¢, use that. Here c=8.

Level | Arg/ TC of Level TC
Base case: T(1)=8 pb size | 1 node | per
n 8 8

1

n/2 8 2 2*8
n/4 8 4 4*8
e 6 6 o 6 6 o o o o o o & o o o o o o o o i n/2| 8 2| 2|*8
T(L T(1) TQ@ 1)
) (&) .- ORO =" T
(=n/2¥) (=n)

Stop at level p, when the subtree is T(1).

=> The problem size is 1, but the general Tree TC = c(1+2+22423+...42'+...+2P)=8%*2p*1/(2-1)
formula for the problem size, at level p is: =2*8*2P=16n=0O(n)

n/2P=>n/2P=1=>2P=n=>p =Ign

Recursion Tree for: T(n) = 2T(n/2)+cn

Level TC

Base case: T(1) =c

[] i n/zl C*n/zl 2I zl*c*n/zl
=c*n

T T(1) T(Q) T(1)
c o —p=lgn 1 c=c*l= 2P 2P*c*n/2p

(=n/2P) c*n/2P (=n) =c*n
Stop at level p, when the subtree is T(1).

=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2P=>n/2P=1=>2P=n => p=Ign

TreeTC =cn(p+1) = cn(1 + lgn)
= cnlgn + cn = 6 (nlgn)

Recursion Tree for T(n) = 3T(n/2)+c

Level | Arg/ Level TC
pb size

Base case: T(1) =c

i n/2 c*n/2i 3 (3)*c

T(T(0) T() TQ) D) N\TO
e o o — s p:lgn

Stop at level p, when the subtree is T(1). (=n/2?)
=> The problem size is 1, but the general
formula for the problem size, at level p is:
n/2P=>n/2P=1=> 2P=n=> p =Ign

=

c=c*1= 3P (3)P*c
c*n/2P (#n)

Recursion Tree for T(n) = 3T(n/2)+cn

TC of Level TC
Base case: T(1) =c 1 node

n c*n 1 c*n
A=
n/2 c*n/2 3 3*c*n/2
- =(3/2)*c*n
n/4 c*n/4 9 (3/2)**c*n
/
[] e o e 6 o o [] e o o [] e o e o o o [] e [] i n/2| C*n/zl 3i (3/Z)i*c*n

T T(0) T(0) T() M N\NTO 7
.« o —p=lgn 1 c=c*1= 35, (3/2)P*c*n

(=n/2P) c*n/2P (#n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2P=1=> 2P=n=> p =Ign

10

Total Tree TC for T(n) = 3T(n/2)+cn

Closed form
T(n)=cn+(3/2)cn+(3/2)°cn+...(3/2)'cn+...(3/2)"cn =
= cn¥[1+(3/2)+(3/2)* +...+(3/2)""]=cn> °"(3/2)' =
(3/2)Ign+1_1

(3/2)-1
use :Clgn: nIgc —~ (3/2)Ign — r]Ig(3/2) — nIg3—|gZ — nIgS—l —~

=Cch¥

— 2cn[(3/2)*(3/2)"9" —1] =3cn*(3/2)"" —2cn

=3cn*n'e** —2cn =3cn"'%*" —2cn =3cn'?® — 2cn = O(n'??)

Explanation: since we need O, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression):

. Cli e -1 O(n * (3/2) * (3/2)'8™) = O(n * (3/2)'8™)
3/2) -1
use: Clgn — nlgc => (S/Z)Ign = nlg(3/2) — nlg 3-1g2 — nlg3_1 =>
=0(n*n'83"1) = @(n'e?)

Recursion Tree for: T(n) = 2T(n/5)+cn

T%ff Ei T(1)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/5P=>n/5P=1=>5P=n => p =log;n

T(Q) T(1)
— p=

Level TC

n c*n 1 c*n
n/5 c*n/5 2 2*c*n/5
=(2/5)*cn
n/5?2 c*n/52 4 4*%c*n/
=(2/5)cn
i n/s! c*n/5" 2 2i*c*n/5i
=(2/5)cn
1 c=c*1= 2° 2P*c*n /5P
logsn (=n/5P) c*n/5° (=n) =(2/5)Pcn
Tree TC

(derivation similar to TC for T(n) = 3T(n/2)+cn)

12

Total Tree TC for T(n) = 2T(n/5)+cn

T(n)=cn+(2/5)cn+(2/5)?cn+...(2/5)' cn+...(2/5)"%"¢cn =
=cn*[1+(2/5)+(2/5)* +...+(2/5)"%"] =
=cn> " (2/5) <cn> " (2/5)' =

1

= cn*l_(2/5) =(5/3)cn =0(n)

Also

T(nN)=cn+..=T(M)=>=cn=T(n)=Q(n)
=T (n) =OG(Nn)

In the recursive case of the recurrence
formula capture the number of times

Code => Recurrence the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function.

int foo (int N) {

int a,b,c;

if (N<=3) return 1500; // Note N<=3
a = 2*foo (N-1);
// a = foo(N-1)+foo (N-1);

printf ("A");

b = foo(N/2);

c = foo(N-1);

return atb+c;

}

Base case: T)=

Recursive case: T() =
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)

14

In the recursive case of the recurrence
formula capture the number of times

Code => Recurrence => O the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function.

vold bar (int N) {
int 1i,k,t;
1f (N<=1) return;
bar (N/5) ;
for (i=1;1<=5;1++) {
bar (N/5) ;
}
for (i=1;1<=N; i++) {
for (k=N; k>=1;k--)
for (t=2;t<2*N; t=t+2)
printf ("B");
}
bar (N/5) ;
}

T(N) = oo
Solve T(N)

15

Compare

volid fool (int N) {

1f (N <= 1) return;
for (int i=1; 1<=N; 1++){
fool (N-1);
}
}
T(0)=T(1) = c
T(N) = N*T(N-1) + cN

volid fooZ2 (int N) {
if (N <= 5) return;
for(int i=1; 1<=N;
printf ("A");

i++) {

}

foo2 (N-1); //outside of the loop

c for all O0SN<5
T(N-1) + cN

(BaseCase (s8))

(Recursive Case)

int foo3(int N) {
if (N <= 20)

for (int 1i=1;

return 500;
1<=N; 1i++) {

return foo3 (N-1);

// No loop. Returns after the first iteration.

}

}

T(N) = ¢ for all 0=<N<20
complexity. For the base case,
instructions: one comparison,

T(N) = T(N-1)

N<=20,
+ C

Do not confuse
c is not 500.
and one return,

In the recursive case of the recurrence
formula captures the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function. E.g. pay attention to
2*foo(N/3) vs foo(N/3) + foo(N/3)

what the function returns with its time
At most, ¢ 1s 2 (from the 2
return 500)

16

Code =>recurrence

int search(int A[], int L, int R, int wv){
int m = (L+R)/2;
if (L > R) return -1;
if (v == A[m]) return m;
if (L == R) return -1;
if (v < A[m]) return search(A,L,m-1,v);
else return search (A, m+1,R,v);
}
(Use: N = R-L+1)
Here, for the same value of N, the behavior depends also on data in A and val.

Best case T (N)
Worst case:
—> We will report in general:

C

T (N)

in best case
@ (lg(N))
search is O(1lg(N))

=> search is ©(1)
T(N/2) => T (N)

+ cC = => search is ©(1lg(N))in worst case

Code => recurrence

int weird(int A[], int N) {

if (N<=4) return 100;

if (N%5==0) return weird(A,N/5);

else return weird(A,N-4)+weird (A, N-4);
}

Here, the behavior depends on N so we can explicitly capture that in the
recurrence formulas:

Base case(s): T(N) = c for all 02<NZ4 (BC)

Recursive case(s):

T(N) = T(N/5)+c for all N>4 that are multiples of 5 (RC1)
T(N) = 2*T(N-4) + ¢ for all other N (RC2)

For any N, in order to solve, we need to go through a mix of the 2 recursive
cases => cannot easily solve. => try to find lower and upper bounds.

Note that RC1 has the best behavior: only one recurrence and smallest subproblem
size (i.e. N/5) => use this for a lower bound =>

T N) = T(N/5)+c = ©(log.N) , (and T(N)= T, .. (N)) => T(N) = Q(log.N)

lower (

Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem
size (1.e. N-4) => use this for an upper bound =>

T (N) = 2*T(N-4)+c = ©(2V¥/4) , (and T (N)<T (N)=0 (2¥/4)) => T(N) = 0(2V/4)

upper ~ T upper

We have Q and O for T(N), but we cannot compute ® for it.

18

Recurrence => Code
Answers

* Give a piece of code/pseudocode for which
the time complexity recursive formula is:
—T(1)=c and
— T(N) = N*T(N/2) + cN

void foo (int N) {
if (N <= 1) return;
for (int i=1; i<=N; i++)
foo (N/2);

Recurrences:
Recursion-Tree Method

1. Build the tree & fill-out the table

2. Compute TC per level
3. Compute number of levels (find last level as a function of N)

4. Compute total over levels.
* Find closed form of that summation.

Example 1:Solve T(n)=3T (_n/4j) +0(n%)

Example 2:Solve ~ T(n)=T(n/3)+T(2n/3)+0O(n)

Recurrence - Recursion Tree
Relationship
T(1) = c

Problem size The local TC at the node T(n)
/ T(n/b?)

Number of subproblems => Size of a subproblem => @

Number of children of a node | | Affects the number of recursive

in the recursion tree. => calls (frame stack max height and

Affects the number of nodes tree height)

per level. At level i there will Recursion stops at level p for which

be a' nodes. the pb size is 1 (the node is labelled . .

Affects the level TC. T(1))=>n/bP=1=> T(n/bP
Last level, p, will be: p = log,n C C
(assuming the base case is for T(1)). T(1)

T(n) = 7T(n/5)+cn3 , Ifnis nota multiple of 5, use round down for n/5

Level TC

T(1)=c, T(0)=c

Work it out by hand in class.
Draw tree, fill out table.

Level | Arg/ TCof 1
pb size | node
0

1

22

T(n) = 7T(n/5)+cn3,

T(1)=c, T(0)=c

Each internal

If n is not a multiple of 5, use round down for n/5

node has 7 T(n) N
3

children

T T(1)

Stop at level p, when the
subtree is T(1). => The
problem size is 1, but the
general formula for the
problem size, at level p is:
n/5P=>n/5P=1=> p =log.n

Level | Arg/ Level TC
pb size
' 0 >n cn3 1 c*n3
T——>n/5 c(n/5)3 7 7*c*(n/5)3
=cn3 (7/53)
2 n/52 c(n/5%)3 72 7%*c*(n/52)3
=cn3(7/53)2
i n/5 c(n/5)3 7 7*c*(n/5') 3
=cn3(7/53)
T(1) T(1'"\
‘C i iC p=— 1 > c=c*1= 7P 7P*c*(n/5P)3
Logsn (=n/5P) ¢(n/5P)3 =cn3(7/53)°

Where we used: 7(—)3=7in 3()3 = 7in 3()t =nd (5)‘

Tree TC: T(n) = Zlogsn 3(53)‘ =cn Zlog5n(sg)l —

3 1—(7/125)1*logsn _ 3 _ 3
' (7/125) < cn3 TT771zs O(n°) =Tmn) =0n>)

ButT(n) = Q(n3) = T(n) = 0(n3)

23

T(n) = 7T(n/5)+cn3 , Ifnis nota multiple of 5, use round down for n/5
T(1)=¢, T(0) =c

24

T(n) = 5T(n-6)+c

T(n)=cforall0<n<5 (ie T(0)=T(1)=T(2)=T(3)=T(4)=T(5)=c)

Assume n is a multiple of 6

Each internal

node has 5 T(n) .
c)

Level | Arg/ TCof 1 | Nodes | Level TC
pb size | node per
level
0 >n o 1 o

children

N\

Timﬁ }[{0) 1o T(0
c | |[c o c hL

Stop at level p, when the subtree is T(0).
=> The problem size is O, but the general

formula for the problem size, at level p is:
n-6p=>n-6p=0=> p=n/6

—>n-6 C 5 5*c
2 n-2*6 ¢ 52 52%¢
i n-6i C 5i S5i*c
p= 0 >C 5p 5p¥c
n/6 (=n-6p)

T(n) = c(145+52 + 53+ ... +5+...45P)=
(5P*-1)/(5-1)=0(5P)= O(5"6)

25

* Rounding up or down the size of subproblems does not affect Theta. All four
recurrences below have the same Theta:

T(N) = 2T (g) tec,

N
T(N)=2T(§>+c

:N:

(I3

 See more solved examples later in the presentation. Look for page with title:

More practice/ Special cases

Tree Method for lower/upper bounds
T(n) =T (n/3)+T(2n/3)+0O(n)

Draw the tree, notice the shape, see length of shortest and longest paths.

Notice that:

— aslong as the levels are full (all nodes have 2 children) the level TCis cn (the sum
of TC of the children equals the parent: (1/3)*p_TC+(2/3) *p_TC)

= Total TC for those: cn*log;n = O(nlgn)

— The number of incomplete levels should also be a multiple of Ign and the TC for
each of those levels will be less than cn

— =>Guess that T(n) = O(nlgn)
Use the substitution method to show T(n) = O(nlgn)

If the recurrence was given with © instead of O, we could have shown
T(n) = ©(nlgn)
— with O, de only know that: T(n) £ T(n/3)+T(2n/3)+cn
— The local TC could even be constant: T(n) = T(n/3)+T(2n/3) + c
Exercise: Solve
— T,(n)=2T,(n/3)+cn (Why can we use cn instead of @(n) in T,(n) = 2T,(n/3)+cn ?)
— T,(n) =2T,(2n/3)+cn (useful: Ig3 =1.59)

— Use them to bound T(n). How does that compare to the analysis in this slide? (The
bounds are looser).

Common Recurrences Review

Halve problem in constant time :

T(n) =T(n/2) +c O(lg(n))

Halve problem in linear time :
T(n) =T(n/2) + n O(n) (~2n)

Break (and put back together) the problem into 2 halves in constant time:
T(n) = 2T(n/2) + c ®O(n) (~2n)

Break (and put back together) the problem into 2 halves in linear time:
T(n) = 2T(n/2) + n O(nlg(n))

Reduce the problem size by 1 in constant time:
T(n) =T(n-1) + c O(n)

Reduce the problem size by 1 in linear time:
T(n) =T(n-1) + n O(n?)

28

Master theorem

 We will use the Master Theorem from wikipedia as it covers
mMmore cases.
https://en.wikipedia.org/wiki/Master theorem (analysis of algorithms)

* Check the above webpage and the notes handwritten in class.

e Discussion.

On Wikipedia, below the inadmissible equations there is the justification
pasted below.

However the cases given for the Master Theorem on Wikipedia, do not
include any € in the discussion. Where does that € come from? Can you do
math derivations that start from the formulation of the relevant case of the
Theorem and result in the € and the inequality shown above?

In the second inadmissible example above, the difference between f(n) and nl%%% can be expressed with the ratio
f(n) — n/logn n 1 ,

= = = . It is clear that
7108y @ nlos; 2 nlogn logn logn

< nf for any constant € > 0. Therefore, the difference is not

polynomial and the basic form of the Master Theorem does not apply. The extended form (case 2b) does apply, giving the

solution T'(n) = ©(nloglogn).

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

30

Recurrences:
Induction Method

1. Guess the selution
2. Use induction toxarove it.
3. Check it at the boundacries (reelrsion base cases)

Example: Find upper bodnd for: “R(n)=2T(n/2])+n
1. Guess that T(nl= O(nign) =>
2. Prove thatA(n) = O(nlgn) using T(n) <= critgn (for some c)
1. Asspyfe it holds for all m<n, and prove it holds for

3. Asslme base case (boundary): T(1) = 1.

Pick c and n, s.t. it works for sufficient base cases and applying

the inductive hypotheses.
31

Recurrences: Induction Method

T(N)=2T(n/2)+n

2. Prove that T(n) = Oflgn), using the definition:
find c and n, s.t. T(n) < c*niig

(here: f(n) = T(n), g(n) = nlgn)

Show with induction: T(n) £ c*nlgn (fogsome”c>0)
T(N)=2T(n/2)+n<2*c*|n/2 [*IgAR) +n <
<2*c*(n/2)*lg(n/2)+n=cnlg(p2)+n=
=cn(lgn—-Ig2)+n=cn(lgns&+n=cnlgn—-cn+n
=cn|gn+

want :

<cnlgh=

Nnl-c)sdf=1-c<0=>c2>1

PigiCc = 2 (the largest of both 1 and 2).
Pick ny =2

3. Bafe case (boundary):
KSsume T(1)=1

Find n, s.t. the induction
holds for all n2 n,.
n=1:1=T(1) £ c*1*Igl =c*0 =0
FALSE. => n, cannot be 1.

n=2:T(2) =2*T(1) + 2 = 2+2=4
Want T(2) < c*2Ig2=2c, True
& Cc22

n=3: T(3)2*T(1)+3=2+3=5
Want 5=T(3) g*3*Ig3
True for: c=2

Here we need 2 base cases
for the induction: n=2, and
n=3

32

Recurrences: Induction Method
Various Issues

Subtleties (stronger tendition needed)
— Solve: T(n) =T/l + ®J"/,]) + 1withT/l) = 1and T(0) =1
— Use a stronger condition: off byna constan#”subtract a constant
Avoiding pitfalls

— Wrong: In the above example, stép at T(njecn+1 and conclude that T(n) =O(n)
— See also book example of wbng proof for TM=2T(n/2)+n isO(n)

Making a good guéss

— Solve: T(MZ£2T(n/2|+17)+n

— Find a_séMmilar recursion

— Us#”looser upper and lower bounds and gradually tighten them
anging variables

— Recommended reading, not required (page 86)

33

Stronger Hypothesis for
T()=T(n/2)+T(n/2]+1
Show T(n) = O(npwsing the definition: find c and n, s.t. T(n) < c*p
(here: f(n) = T(n), g(n)=un). Use induction to show T(n) < c*z
Inductive step: assume it holds for all m<n, show for n;
T()=T(n/2)+T(n/2)+1¥gn/2]|+c[n/2+1=
=c(n/2]+[n/2)+1=cn+1

We’re stuck. We CANNOT say that J{n) =0O(n) d&this point. We must prove the
hypothesis exactly: T(n) <cn (p6t: T(n)<cn+1).

Use a stronger hypothesis/prove that T(n) <cn-d, for sorme_const d>0:
T)=T(n/2)+THN/2)+1<c|n/2|-d+c[n/2]-d +1>
=c(n/2|+[nZ)+1-2d =cn-d +1-d

want :

<cp”Lld =
—-d<0=>d>1

34

Extra material — Solve:
T(n)=3T(n/4))+O(n?)

* Use the tree method to make a guessAor:
T(n)=3T(n/4)+6°)

* Use the induction metld forthe original recurrence
(with rounding doym):
T(n) =3T(n/44/+0O(n?)

35

More practice/ Special cases

Recurrences solved in following slides

Recurrences solved in Recurrences left as
following slides: individual practice:
T(n) = T(n-1)+c T(n) = 7T(n/3)+cn
T(n) = T(n-4)+c T(n) = 7T(n/3)+cn3
T(n) = T(n-1)+cn T(n) = T(n/2)+n

T(n) = T(n/2)+c

T(n) = T(n/2)+cn See also “recurrences
T(n) = 2T(n/2)+c practice” problems on the
T(n) = 2T(n/2)+8 Exams page.

T(n) = 2T(n/2)+cn

T(n) = 3T(n/2)+cn

T(n) = 3T(n/5)+cn

Time
complexity
tree:

T(N) = T(RD) + ¢

fact(N)

int faEE(int N)
{
, .

oo

\

)

Time complexity of fact(N) ? T(N) =

T(N) =T(N-1) +c_

T312=c

T(0)=c

Levels_:ﬁ_
Each node has TC c =>
T(N) =_giN = O(N)

38

A o W |
- | C U) L
— T(N) = T(N-4) + C

Time

Comp]exity int fact4 (int N)

tree: { .

if (N <= 1) return 1;

ILN) ife (N == 2) returﬁ;g;

}

if (N =i‘§l return 6
return N* (N-1)* (N-2)* (N-3) Afact4d (N-4));
R N / —

L]
-— -
-— .

-

Time complexity of fact4(N) ? T(N) = ...

JT(N) = T(N-4) + ¢
T03) = ¢ ¢ Y- N<

. l(rw)=c¢ =
TiZ) C "
T(1)=c

T(0)=c |

e —

Levels: =N/4
Each node has T c =>
T(N) = c*N/4 = ©(N)

39

Time
complexity
tree:

T(N) = T(N-1) + cN
selection sort rec(N)

T(N)

T(N-1
c(n-1)

T(2

(1)

int fact(int N, 1int st, int[] A,) {
if (st >= N-1) return;

idx = min index (A, st,N); // ©(N-st)

Alst] <-> A[idx]
return sel sort rec(A,st+1,N);

T(N) = T(N-1) + cN
T(1)=c
T(0) =c

Levels: N
Node at level i has TC ¢(N-i) =>
T(N) = cN+c(N-1)+...ci+..c = cN(N+1)/2 = O(N?)

40

Time
complexity
tree:

T(N)

T(N/2

T(2

(1)

T(N) = T(N/2) + ¢

T(N)=T(N/2) +c
T(1)=c
T(0) =c

Levels: =IgN (from base case: N/2P=1 => p=IgN)
Each node has TC ¢ =>
T(N) = c*IgN = O(IgN)

41

Time
complexity
tree:

T(N)

T(N/2
cN/2

T(2

(1)

T(N) =T(N/2) + cN

T(N) =T(N/2) + cN
T(1)=c
T(0) =c

Levels: =IgN (from base case: N/2P=1 => p=IgN)
Node at level i has TC cN/2' =>
T(N)=c(N+N/2+N/22+..N/2"+ ..+ N/2K) =
=cN(1+1/2+1/22+...1/21+..+1/2¥) =
=cN[1+(1/2) + ()2 + ... (B)' + ... + (&)P] =
= cN*constant
= O(N)

42

Recursion Tree for: T(n) = 2T(n/2)+c

Base case: T(1) =c

Level | Arg/ TCof | Nodes
pb size | 1 node | per
level
0 n o 1 o

T (15 i T(1) TQ j

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2P=1=> p =Ign

1 n/2 C
2 n/4 C
[n/2’ C
T(D)
C)— p=lgn 1 C
(=n/2P)

2 2C
4 4c
2i 2ic
2P 2k

(=n)

Tree TC = c(1+2+22+23+...+2i+...+2p)=c2p\+z/(2-1)
= 2¢c2P =2cn = 0O(n)

43

Recursion Tree for: T(n) = 2T(n/2)+8

If specific value is given instead of ¢, use that. Here c=8.

Base case: T(1) =8

Level | Arg/ TC of Level TC
pb size | 1 node | per
n 8 8

1

T(L T(1) TQ@ 1)
(8) (&) .- () (8) icn

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2°P=1=>2P=n=>p = Ign

n/2 8 2 2*8
n/4 8 4 4*8

i n/2 8 2 2i*8
1 8 P 2*8
(=n/2¥) (=n)

Tree TC = c(1+2+22423+...42'+...+2P)=8%*2p*1/(2-1)
=2%8*2P=16n=0O(n)

44

Recursion Tree for: T(n) = 2T(n/2)+cn

Base case: T(1) =c

T T(1) T(Q) T(1)
) —p:'gn

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2P=1=>2P=n => p=lgn

Level TC

n/2 c*n/2t 2 2i*c*n/2
=c*n

1 c=c*1= 2° 2P*c*n/2p

(=n/2°P) c*n/2P (=n) =c*n

Tree TC

=cn(p+1) =cn(1 + lgn)
= cnlgn + cn = 6 (nlgn)

45

Recursion Tree for T(n) = 3T(n/2)+cn

TC of Level TC
Base case: T(1) =c 1 node

0 n c*n 1 c*n
1 n/2 c*n/2 3 3*c*n/2
=(3/2)*c*n
2 n/4 c*n/4 9 (3/2)**c*n
[] e o e 6 o o [] e o o [] e o e o o o [] e [] i n/2| C*n/zl 3i (3/Z)i*c*n

T T(0) T(0) T() M N\NTO 7
.« o —p=lgn 1 c=c*1= 3P (3/2)P*c*n

(=n/2P) c*n/2P (#n)

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/2P=>n/2P=1=> 2P=n=> p =Ign

46

Total Tree TC for T(n) = 3T(n/2)+cn

Closed form
T(N)=cn+(3/2)cn+(3/2)’cn+...(3/2)'cn+...(3/2)"cn =
= cn¥[1+(3/2)+(3/2)* +...+(3/2)""]=cn> °"(3/2)' =
(3/2)'9"t -1

(3/2)-1

use :Clgn: nIgc —~ (3/ 2)Ign — r]Ig(3/2) — nIg3—|gZ — nIgS—l —~

=Cch¥

— 2cn[(3/2)*(3/2)"9" —1] =3cn*(3/2)"" —2cn

=3cn*n'e** —2cn =3cn"'%*" —2cn =3cn'?® — 2cn = O(n'??)

Explanation: since we need O, we can eliminate the constants and non-
dominant terms earlier (after the closed form expression):

(3/2)|gn+1_1 Ign+1 Ign
.=Ccnh™* =0O(N*(3/2)*(3/2)"° =0O(Nn*(3/2)"°
3/2) -1 (n*(@/2)*(3/2)°") (n*(3/2)"")
use :Clgn: nIgc —~ (3/2)Ign _ r.]Ig(3/2) — nIg3—I92 — nIg’é‘,—l —~

=O(N*n'°*) =0 (n'?)

Recursion Tree for: T(n) = 2T(n/5)+dn’

Level | Arg/ TCof | Nodes | Level TC
pb size | 1 node | per
level
0 n c*n 1 c*n

1 n/5 cn/5)5 2 2*c*n/5

- - =(2/5)*cn

2 n/5?2 c‘f/52)34 4*%c*n/

— e =(2/5)cn
i n/s! c*n/5" 2 2i*c*n/5i
=(2/5)cn

T T(1) T(Q) T(1)
e o o —p= 1 C=C*1= 2P Zp*c*n/5p

Stop at level p, when the subtree is T(1).
=> The problem size is 1, but the general

formula for the problem size, at level p is:
n/5P=>n/5P=1=>5P=n => p =log;n

logsn (=n/5P) c*n/5° (=n) =(2/5)Pcn

Tree TC
(derivation similar to TC for T(n) = 3T(n/2)+cn)

48

Total Tree TC for T(n) = 2T(n/5)+cn

T(n)=cn+(2/5)cn+(2/5)?cn+...(2/5)' cn+...(2/5)"%"¢cn =
=cn*[1+(2/5)+(2/5)* +...+(2/5)"%"] =

=cn> " (2/5) <cn> " (2/5)' =
x 1 — —
=Cn 1-(2/5) =(5/3)cn =0(n)

Also

T(nN)=cn+..=T(MN)=>=cn=T(n)=Q(Nn)
=T (n) =OG(Nn)

Other Variations

* T(n) =7T(n/3)+cn

* T(n) =7T(n/3)+ cn?
— Here instead of (7/3) we will use (7/3°)

* T(n) =T(n/2) +n
— The tree becomes a chain (only one node per level)

Additional materials

Practice/Strengthen understanding
Problem

* Look into the derivation if we had: T(1) =d # c.
— In general, at most, it affects the constant for the dominant term.

Practice/Strengthen understanding
Answer

Look into the derivation if
we had: T(1) =d # c.
— At most, it affects the

constant for the dominant
term.

Level | Arg/ TC of Nodes | Level TC
pb size | 1 node | per
level
n c*n 1 c*n

0

1 n/2 c*n/2 2 2*c*n/2
=c*n

2 n/4 c*n/4 4 4*c*n/4
=C*n

i n/2 c*n/2t 2 2i*c*n/2
=c*n

p=lgn 1 2P

(=n/2P) (=n) =d*n

Tree TC = cnp + dn = cnlgn + dn = 0(nlgn)

53

Permutations without repetitions
(Harder Example)

* Covering this material is subject to time availability

* Time complexity
— Tree, intuition (for moving the local TC in the recursive call TC), math
justification
— induction

More Recurrences
=xtra material — not tested o

M1. Reduce the prgblem size by 1 in logarithmic time
— E.g. Check Ig(Nntems, eliminate 1

M?2. Reduce the problem sizehy 1 in N2 tipé
— E.g. Check N2 pairs, eliminatesl itz

M3. Algorithm that:
— takes ©(1) time to go g¥er N items.
— calls itself 3 times @ data of size N-1.
— takes ©(1) time”to combine the results.

M4. ** Algorfthm that:
— s itself N times on data of size N/2.
takes ©(1) time to combine the results.
— This generates a difficult recursion.

55

	Slide 1
	Slide 2: Background
	Slide 3: Recurrences
	Slide 4: Solving Recurrences Methods
	Slide 5: Recurrence - Recursion Tree Relationship
	Slide 6: Recursion Tree for: T(n) = 2T(n/2)+c
	Slide 7: Recursion Tree for: T(n) = 2T(n/2)+8
	Slide 8: Recursion Tree for: T(n) = 2T(n/2)+cn
	Slide 9: Recursion Tree for T(n) = 3T(n/2)+c
	Slide 10: Recursion Tree for T(n) = 3T(n/2)+cn
	Slide 11: Total Tree TC for T(n) = 3T(n/2)+cn
	Slide 12: Recursion Tree for: T(n) = 2T(n/5)+cn
	Slide 13: Total Tree TC for T(n) = 2T(n/5)+cn
	Slide 14: Code => Recurrence
	Slide 15: Code => Recurrence => Θ
	Slide 16: Compare
	Slide 17: Code =>recurrence
	Slide 18: Code => recurrence
	Slide 19: Recurrence => Code Answers
	Slide 20: Recurrences: Recursion-Tree Method
	Slide 21: Recurrence - Recursion Tree Relationship
	Slide 22
	Slide 23: T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c
	Slide 24: T(n) = 7T(n/5)+cn3 , If n is not a multiple of 5, use round down for n/5 T(1) = c, T(0) = c
	Slide 25: T(n) = 5T(n-6)+c T(n) = c for all 0 ≤ n ≤ 5 (i.e. T(0)=T(1)=T(2)=T(3)=T(4)=T(5)=c) Assume n is a multiple of 6
	Slide 26
	Slide 27: Tree Method for lower/upper bounds
	Slide 28: Common Recurrences Review
	Slide 29: Master theorem
	Slide 30
	Slide 31: Recurrences: Induction Method
	Slide 32: Recurrences: Induction Method
	Slide 33: Recurrences: Induction Method Various Issues
	Slide 34: Stronger Hypothesis for
	Slide 35: Extra material – Solve:
	Slide 36: More practice/ Special cases
	Slide 37: Recurrences solved in following slides
	Slide 38: T(N) = T(N-1) + c fact(N)
	Slide 39: T(N) = T(N-4) + c
	Slide 40: T(N) = T(N-1) + cN selection_sort_rec(N)
	Slide 41: T(N) = T(N/2) + c
	Slide 42: T(N) = T(N/2) + cN
	Slide 43: Recursion Tree for: T(n) = 2T(n/2)+c
	Slide 44: Recursion Tree for: T(n) = 2T(n/2)+8
	Slide 45: Recursion Tree for: T(n) = 2T(n/2)+cn
	Slide 46: Recursion Tree for T(n) = 3T(n/2)+cn
	Slide 47: Total Tree TC for T(n) = 3T(n/2)+cn
	Slide 48: Recursion Tree for: T(n) = 2T(n/5)+cn
	Slide 49: Total Tree TC for T(n) = 2T(n/5)+cn
	Slide 50: Other Variations
	Slide 51: Additional materials
	Slide 52: Practice/Strengthen understanding Problem
	Slide 53: Practice/Strengthen understanding Answer
	Slide 54: Permutations without repetitions (Harder Example)
	Slide 55: More Recurrences Extra material – not tested on

