
Recurrences:
Master Theorem

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

19/24/2024

Merge sort (CLRS)

2

• Recurrence formula
– Here n is the number of items being processed

– Base case:
• T(1) = c
• (In the code, see for what value of n there is NO recursive

call. Here when le≥r => n ≤ 1)

– Recursive case:
• T(n) = 2T(n/2) + cn
• also ok:
• T(n) = 2T(n/2) + Θ(n)

T(n/2)

T(n/2)

Merge_sort(A,le,r) //n = r-le+1

if (le>=r) return

else

m = floor((le+r)/2)

Merge_sort(A,le,m);

Merge_sort(A,m+1,r);

Merge(A,le,m,r);

Mergesort
Merge_sort(A,le,r) //n = r-le+1

if (le>=r) return

else

m = floor((le+r)/2)

Merge_sort(A,le,m);

Merge_sort(A,m+1,r);

Merge(A,le,m,r);

- How many recursive calls are EXECUTED (called) in
one function call ?

- What is the local TC?

- draw tree

3

Binary Search - recursive
/* Adapted from Sedgewick, n = right-left+1 */

int search(int A[], int left, int right, int v)

{ int m = (left+right)/2;

if (left > right) return -1;

if (v == A[m]) return m;

if (left == right) return -1;

if (v < A[m])

return search(A, left, m-1, v);

else

return search(A, m+1, right, v);

}

- How many recursive calls are EXECUTED (called) in
one function call ?

- What is the local TC

- draw tree

Recurrences
• Examples:

– T(n) = 2T(n/2) + n (base cases: T(0) = T(1) = c , recurrence for TC of Mergesort)

– T(n) = T(n-3) + 500 (base cases: T(0)=T(1)=T(2) = c)

– f(n) = 4f(n/5) + c (is c a constant here?) (base cases: f(0)=f(1) = 6)

– S(n) = S(n/3) + n2lgn (base cases: S(0)=S(1) = 20)

• Same meaning: n/cn/Θ(n)
– T(n) = 2T(n/2) + n
– T(n) = 2T(n/2) + cn
– T(n) = 2T(n/2) + Θ(n)

• Used to
– Describe the time complexity of recursive algorithms.
– Compute the number of nodes in certain trees.
– Another way to express the time complexity of non-recursive algorithms (e.g. insertion sort).

(Identify the subproblems and the local work)

• Methods for solving recurrences:
– trees (recurrence tree)
– Master Theorem
– expansion of the recurrence into a summation by using repeated substitution

4

T(1) = c
T(N) = 4T(N/5)+c

5

6

Using the Master Theorem

• Review: know how to apply a theorem
– check if the conditions are met

– apply it

• Be able to write the recurrence formula for a piece of code.

• Given a recurrence, decide if Master Theorem can be used to solve it or not

• Applying Master Theorem
– Identify which case of the theorem to use

– check the condition(s)

– solve recurrence (if conditions were met)

7

Master Theorem – simplified versions M1 and M2
M1 (Master Theorem easy 1): Let a≥1 and b>1, and let 𝑻 𝒏 be defined on the nonnegative integers by the recurrence:

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒏𝒑 , where we interpret

𝒏

𝒃
to mean either 𝑛/𝑏 or 𝑛/𝑏 .

1. 𝐼𝑓 log𝑏 𝑎 < 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛𝑝) .

2. 𝐼𝑓 log𝑏 𝑎 > 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

3. 𝐼𝑓 log𝑏 𝑎 == 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛𝑝𝑙𝑔𝑛)

M2 (Master Theorem easy 2): Let a≥1 and b>1, and let 𝑻 𝒏 be defined on the nonnegative integers by the recurrence:

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒏𝒑(𝒍𝒈𝒏)𝒌 , 𝑤ℎ𝑒𝑟𝑒 𝐥𝐨𝐠𝒃 𝒂 == 𝒑 𝑎𝑛𝑑 𝒌 ≥ 𝟎 , where we interpret

𝒏

𝒃
to mean either 𝑛/𝑏 or 𝑛/𝑏 ,

then 𝑻 𝒏 = 𝚯 𝒏𝒑 𝒍𝒈𝒏 𝒌+𝟏

M3 – Extension of M2 for k<0 – not required.

– M3a) if k>-1 , then T(n) = Θ(np (logn)k+1).

– M3b) if k==-1, then T(n) = Θ(np loglogn)

– M3c) if k<-1, then T(n) = Θ(np).

• Check the notes handwritten in class to see how to apply these theorems.

• The Master Theorem from wikipedia and other sources cover more cases, but are more difficult to understand
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

8

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Examples of equations that do not match the
Master Theorem requirements

• Give examples of recurrences that cannot be solved with Master Thm
(see also https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms))

• T(n) = 0.5 T(n/2) +n^2 (bad a)

• S(n) = 2S(3n) + n (bad b: b = 3n = n/b => 3 = 1/b
=> b= 1/3 not > 1)

• U(n) = U(n-4) + 5 (bad smaller pb size: n-b not n/b)

• T(n) = 3T(n/2) - n (bad local time complexity: negative)

• How about:

– T(n) = 5T(2n/3) + n4 a = 5>=1, b = 3/2 > 1, we can apply master thm

9

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Solve recurrences

Math review and practice form: https://forms.office.com/r/F8At7KsgmJ

a) T(n) = 9T(n/3) + n4

b) T(n) = 8T(n/2) + n2

c) T(n) = 16T(n/2) + n4

d) T(n) = 9T(n/3) + n2 lgn3

e) T(n) = 8T(n/2) + lgn

f) T(n) = 2T(n/7) + lgn

g) T(n) = 2T(n/3) + T(n/2) + n (**)
10

https://forms.office.com/r/F8At7KsgmJ

Common Recurrences Review

1. Halve problem in constant time :

T(n) = T(n/2) + c Θ(lg(n))

2. Halve problem in linear time :

T(n) = T(n/2) + n Θ(n) (~2n)

3. Break (and put back together) the problem into 2 halves in constant time:

T(n) = 2T(n/2) + c Θ(n) (~2n)

4. Break (and put back together) the problem into 2 halves in linear time:

T(n) = 2T(n/2) + n Θ(n lg(n))

5. Reduce the problem size by 1 in constant time:

T(n) = T(n−1) + c Θ(n)

6. Reduce the problem size by 1 in linear time:

T(n) = T(n-1) + n Θ(n2)

11

Come back later to this slide and:
- solve the recurrences (with tree or Master Thm)
- give examples of algorithms that have these

recurrences. Think:
- n is the input size (e.g. array size)
- + ?? is the local work (or local TC)

(it excludes the work/TC of recursive calls)

12

13

Given a Recursive function (code) => Write the Recurrence

int foo(int N){

int a,b,c;

if(N<=3) return 1500; // Note N<=3

a = 2*foo(N-1);

// a = foo(N-1)+foo(N-1);

printf("A");

b = foo(N/2);

c = foo(N-1);

return a+b+c;

}

Base case: T(__) = __________

Recursive case: T(__) = ___________________
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)

14

Identify
- base case
- recursive case
The recurrence formula captures the
number of times recursive calls
ACTUALLY EXECUTE as we run the
instructions in the function.

Code => Recurrence => Θ

void bar(int N){

int i,k,t;

if(N<=1) return;

bar(N/5);

for(i=1;i<=5;i++){

bar(N/5);

}

for(i=1;i<=N;i++){

for(k=N;k>=1;k--)

for(t=2;t<2*N;t=t+2)

printf("B");

}

bar(N/5);

}

Base case: T(__) = __________

Recursive case: T(__) = ___________________

Solve T(N)

15

The recursive case of the recurrence
formula captures the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function.

Compare

16

void foo1(int N){

if (N <= 1) return;

for(int i=1; i<=N; i++){

foo1(N-1);

}

}

T(0)=T(1) = c

T(N) = N*T(N-1) + cN

void foo2(int N){

if (N <= 5) return;

for(int i=1; i<=N; i++){

printf("A");

}

foo2(N-1); //outside of the loop

}

T(N) = c for all 0≤N≤5 (BaseCase(s))

T(N) = T(N-1) + cN (Recursive Case)

int foo3(int N){

if (N <= 20) return 500;

for(int i=1; i<=N; i++){

return foo3(N-1);

// No loop. Returns after the first iteration.

}

}

T(N) = c for all 0≤N≤20 Do not confuse what the function returns with its time

complexity. For the base case, c is not 500. At most, c is 2 (from the 2

instructions: one comparison, N<=20, and one return, return 500)

T(N) = T(N-1) + c

The recursive case of the recurrence
formula captures the number of times
the recursive call ACTUALLY EXECUTES
as you run the instructions in the
function. E.g. pay attention to code:
2*foo(N/3) vs foo(N/3) + foo(N/3)

Code =>recurrence

17

int search(int A[], int L, int R, int v){

int m = (L+R)/2;

if (L > R) return -1;

if (v == A[m]) return m;

if (L == R) return -1;

if (v < A[m]) return search(A,L,m-1,v);

else return search(A,m+1,R,v);

}

(Use: N = R-L+1)

Here, for the same value of N, the behavior depends also on data in A and val.

Best case T(N) = c => search is Θ(1) in best case

Worst case: T(N) = T(N/2) + c => T(N) = Θ(lg(N)) => search is Θ(lg(N))in worst case

 We will report in general: search is O(lg(N))

Code => recurrence

18

int weird(int A[], int N){

if (N<=4) return 100;

if (N%5==0) return weird(A,N/5);

else return weird(A,N-4)+weird(A, N-4);

}

Here, the behavior depends on N so we can explicitly capture that in the recurrence formulas:

Base case(s): T(N) = c for all 0≤N≤4 (BC)

Recursive case(s):

T(N) = T(N/5)+c for all N>4 that are multiples of 5 (RC1)

T(N) = 2*T(N-4) + c for all other N (RC2)

For any N, in order to solve, we need to go through a mix of the 2 recursive cases => cannot easily solve. => try to find
lower and upper bounds.

Note that RC1 has the best behavior: only one recurrence and smallest subproblem size (i.e. N/5) => use this for a
lower bound =>

Tlower(N) = T(N/5)+c = Θ(log5N) , (and T(N)≥ Tlower(N)) => T(N) = Ω(log5N)

Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem size (i.e. N-4) => use this for an
upper bound =>

Tupper(N) = 2*T(N-4)+c = Θ(2N/4) , (and T(N)≤Tupper(N)=Θ(2N/4)) => T(N) = O(2N/4)

We have Ω and O for T(N), but we cannot compute Θ for it.

Recurrence => Code

• Give a piece of code/pseudocode for which the time
complexity recursive formula is:

– T(1) = c and

– T(N) = N*T(N/2) + cN

19

Recurrence => Code
Answer

• Give a piece of code/pseudocode for which the time
complexity recursive formula is:

– T(1) = c and

– T(N) = N*T(N/2) + cN

20

void foo(int N){

if (N <= 1) return;

for(int i=1; i<=N; i++)

foo(N/2);

}

	Default Section
	Slide 1

	General
	Slide 2: Merge sort (CLRS)
	Slide 3: Mergesort
	Slide 4: Recurrences
	Slide 5: T(1) = c T(N) = 4T(N/5)+c
	Slide 6
	Slide 7: Using the Master Theorem
	Slide 8: Master Theorem – simplified versions M1 and M2
	Slide 9: Examples of equations that do not match the Master Theorem requirements
	Slide 10: Solve recurrences
	Slide 11: Common Recurrences Review
	Slide 12
	Slide 13

	code=>recurrence
	Slide 14: Given a Recursive function (code) => Write the Recurrence
	Slide 15: Code => Recurrence => Θ
	Slide 16: Compare
	Slide 17: Code =>recurrence
	Slide 18: Code => recurrence
	Slide 19: Recurrence => Code
	Slide 20: Recurrence => Code Answer

