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Merge sort (CLRS)
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• Recurrence formula 
– Here n is the number of items being processed 

– Base case:
• T(1) = c  
• (In the code,  see for what value of n there is NO recursive 

call. Here when le≥r => n ≤ 1 )

– Recursive case:
• T(n) = 2T(n/2) + cn
• also ok:   
• T(n) = 2T(n/2) + Θ(n)

T(n/2)

T(n/2)

Merge_sort(A,le,r) //n = r-le+1

if (le>=r) return

else 

m = floor((le+r)/2)

Merge_sort(A,le,m);

Merge_sort(A,m+1,r);

Merge(A,le,m,r);  



Mergesort
Merge_sort(A,le,r) //n = r-le+1

if (le>=r) return

else 

m = floor((le+r)/2)

Merge_sort(A,le,m);

Merge_sort(A,m+1,r);

Merge(A,le,m,r);  

- How many recursive calls are EXECUTED (called) in 
one function call ?

- What is the local TC?

- draw tree
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Binary Search - recursive
/* Adapted from Sedgewick, n = right-left+1 */

int search(int A[], int left, int right, int v)

{ int m = (left+right)/2;

if (left > right) return -1;

if (v == A[m]) return m;

if (left == right) return -1;

if (v < A[m]) 

return search(A, left, m-1, v);  

else 

return search(A, m+1, right, v); 

} 

- How many recursive calls are EXECUTED (called) in 
one function call ?

- What is the local TC

- draw tree



Recurrences
• Examples:

– T(n) = 2T(n/2) + n                                            (base cases: T(0) = T(1) = c , recurrence for TC of Mergesort )

– T(n) = T(n-3) + 500                                          (base cases: T(0)=T(1)=T(2) = c ) 

– f(n) = 4f(n/5) + c  (is c a constant here?)     (base cases: f(0)=f(1) = 6 )

– S(n) = S(n/3) + n2lgn                                       (base cases: S(0)=S(1) = 20 )

• Same meaning: n/cn/Θ(n)
– T(n) = 2T(n/2) + n
– T(n) = 2T(n/2) + cn
– T(n) = 2T(n/2) + Θ(n)

• Used to
– Describe the time complexity of recursive algorithms.
– Compute the number of nodes in certain trees.
– Another way to express the time  complexity of non-recursive algorithms (e.g. insertion sort).

(Identify the subproblems and the local work)

• Methods for solving recurrences: 
– trees (recurrence tree)
– Master Theorem
– expansion of the recurrence into a summation by using repeated substitution 
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T(1) = c
T(N) = 4T(N/5)+c
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Using the Master Theorem 

• Review: know how to apply a theorem
– check if the conditions are met

– apply it

• Be able to write the recurrence formula for a piece of code. 

• Given a recurrence, decide if Master Theorem can be used to solve it or not 

• Applying Master Theorem
– Identify which case of the theorem to use

– check the condition(s)

– solve recurrence (if conditions were met)
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Master Theorem – simplified versions M1 and M2
M1 (Master Theorem easy 1): Let a≥1 and b>1, and let 𝑻 𝒏 be defined on the nonnegative integers by the recurrence:                   

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒏𝒑 ,  where we interpret  

𝒏

𝒃
to mean either  𝑛/𝑏 or 𝑛/𝑏 .

1. 𝐼𝑓 log𝑏 𝑎 < 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛𝑝) .

2. 𝐼𝑓 log𝑏 𝑎 > 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

3. 𝐼𝑓 log𝑏 𝑎 == 𝑝 𝑡ℎ𝑒𝑛 𝑇 𝑛 = Θ(𝑛𝑝𝑙𝑔𝑛)

M2 (Master Theorem easy 2): Let a≥1 and b>1, and let 𝑻 𝒏 be defined on the nonnegative integers by the recurrence:                   

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒏𝒑(𝒍𝒈𝒏)𝒌 , 𝑤ℎ𝑒𝑟𝑒 𝐥𝐨𝐠𝒃 𝒂 == 𝒑 𝑎𝑛𝑑 𝒌 ≥ 𝟎 ,  where we interpret  

𝒏

𝒃
to mean either  𝑛/𝑏 or 𝑛/𝑏 ,

then  𝑻 𝒏 = 𝚯 𝒏𝒑 𝒍𝒈𝒏 𝒌+𝟏

M3 – Extension of M2 for k<0 – not required. 

– M3a) if k>-1 , then T(n) = Θ(np (logn)k+1).

– M3b) if k==-1, then T(n) = Θ(np loglogn )

– M3c) if k<-1, then T(n) = Θ(np).

• Check the notes handwritten in class to see how to apply these theorems.

• The Master Theorem from wikipedia and other sources cover more cases, but are more difficult to understand 
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
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https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)


Examples of equations that do not match the 
Master Theorem requirements

• Give examples of recurrences that cannot be solved with Master Thm
(see also https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms) )

• T(n) =    0.5 T(n/2)  +n^2                                                             (bad a)

• S(n) =    2S(3n) + n                                     (bad b: b =   3n = n/b => 3 = 1/b 
=> b= 1/3 not > 1)

• U(n) =    U(n-4) + 5    (bad smaller pb size: n-b not n/b)

• T(n) =   3T(n/2) - n      (bad local time complexity: negative)

• How about:

– T(n) = 5T( 2n/3) + n4  a = 5>=1, b = 3/2 > 1,  we can apply master thm
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Solve recurrences

Math review and practice form: https://forms.office.com/r/F8At7KsgmJ

a) T(n) = 9T(n/3) + n4

b) T(n) = 8T(n/2) + n2

c) T(n) = 16T(n/2) + n4

d) T(n) = 9T(n/3) + n2 lgn3

e) T(n) = 8T(n/2) + lgn

f) T(n) = 2T(n/7) + lgn

g) T(n) = 2T(n/3) + T(n/2) + n  (**)
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https://forms.office.com/r/F8At7KsgmJ


Common Recurrences Review

1. Halve problem in constant time : 

T(n) = T(n/2) + c Θ( lg(n) )        

2. Halve problem in linear time : 

T(n) = T(n/2) + n    Θ(n)                   (~2n)

3. Break (and put back together) the problem into 2 halves in constant time:                     

T(n) = 2T(n/2) + c      Θ(n) (~2n)

4. Break (and put back together) the problem into 2 halves in linear time:                               

T(n) = 2T(n/2) + n         Θ( n lg(n) )

5. Reduce the problem size by 1 in constant time:

T(n) = T(n−1) + c Θ( n)

6. Reduce the problem size by 1 in linear time:

T(n) = T(n-1) + n Θ( n2 )
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Come back later to this slide and:
- solve the recurrences (with tree or Master Thm)
- give examples of algorithms that have these 

recurrences. Think: 
- n is the input size (e.g. array size)
- + ?? is the local work (or local TC)

(it excludes the work/TC of recursive calls)
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Given a Recursive function (code) => Write the Recurrence

int foo(int N){

int a,b,c;

if(N<=3) return 1500; // Note N<=3

a = 2*foo(N-1);

// a = foo(N-1)+foo(N-1);

printf("A");

b = foo(N/2);

c = foo(N-1);

return a+b+c;

}

Base case:           T(  __ ) = __________

Recursive case: T( __ ) = ___________________
T(N) gives us the Time Complexity for foo(N). We need to solve it (find the closed form)
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Identify
- base case
- recursive case
The recurrence formula captures the 
number of times recursive calls 
ACTUALLY EXECUTE as we run the 
instructions in the function.



Code => Recurrence => Θ

void bar(int N){

int i,k,t;

if(N<=1) return;

bar(N/5);

for(i=1;i<=5;i++){

bar(N/5);

}

for(i=1;i<=N;i++){

for(k=N;k>=1;k--)

for(t=2;t<2*N;t=t+2)

printf("B");

}   

bar(N/5);

}

Base case:           T(  __ ) = __________

Recursive case: T( __ ) = ___________________

Solve T(N)
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The recursive case of the recurrence 
formula captures the number of times 
the recursive call ACTUALLY EXECUTES 
as you run the instructions in the 
function.



Compare
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void foo1(int N){ 

if (N <= 1) return;

for(int i=1; i<=N; i++){ 

foo1(N-1);

}

}

T(0)=T(1) = c

T(N) = N*T(N-1) + cN

void foo2(int N){ 

if (N <= 5) return;

for(int i=1; i<=N; i++){

printf("A");

}

foo2(N-1); //outside of the loop

}

T(N) = c for all 0≤N≤5  (BaseCase(s))

T(N) = T(N-1) + cN (Recursive Case)

int foo3(int N){ 

if (N <= 20) return 500;

for(int i=1; i<=N; i++){ 

return foo3(N-1);

// No loop. Returns after the first iteration. 

}

}

T(N) = c for all 0≤N≤20   Do not confuse what the function returns with its time 

complexity. For the base case, c is not 500. At most, c is 2 (from the 2 

instructions: one comparison, N<=20, and one return, return 500)

T(N) = T(N-1) + c

The recursive case of the recurrence 
formula captures the number of times 
the recursive call ACTUALLY EXECUTES 
as you run the instructions in the 
function.  E.g. pay attention to code:
2*foo(N/3) vs foo(N/3) + foo(N/3)



Code =>recurrence
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int search(int A[], int L, int R, int v){

int m = (L+R)/2;

if (L > R) return -1;

if (v == A[m]) return m;

if (L == R) return -1;

if (v < A[m]) return search(A,L,m-1,v);  

else          return search(A,m+1,R,v);  

} 

(Use:  N = R-L+1)

Here, for the same value of N, the behavior depends also on data in A and val. 

Best case T(N) = c => search is Θ(1) in best case

Worst case: T(N) = T(N/2) + c  => T(N) = Θ(lg(N)) => search is Θ(lg(N))in worst case

 We will report in general: search is O(lg(N))



Code => recurrence
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int weird(int A[], int N){

if (N<=4) return 100;

if (N%5==0) return weird(A,N/5);  

else        return weird(A,N-4)+weird(A, N-4);  

} 

Here, the behavior depends on N so we can explicitly capture that in the recurrence formulas: 

Base case(s): T(N) = c for all 0≤N≤4    (BC)

Recursive case(s): 

T(N) = T(N/5)+c for all N>4 that are multiples of 5     (RC1)

T(N) =  2*T(N-4) + c for all other N             (RC2)

For any N, in order to solve, we need to go through a mix of the 2 recursive cases => cannot easily solve. => try to find 
lower and upper bounds. 

Note that RC1 has the best behavior: only one recurrence and smallest subproblem size (i.e. N/5) => use this for a 
lower bound =>

Tlower(N) = T(N/5)+c = Θ(log5N) , (and T(N)≥ Tlower(N)) => T(N) = Ω(log5N) 

Note that RC2 has the worst behavior: 2 recurrences and both of larger subproblem size (i.e. N-4) => use this for an 
upper bound =>

Tupper(N) = 2*T(N-4)+c = Θ(2N/4) , (and T(N)≤Tupper(N)=Θ(2N/4) ) => T(N) = O(2N/4)  

We have Ω and O for T(N), but we cannot compute Θ for it.



Recurrence => Code

• Give a piece of code/pseudocode for which the time 
complexity recursive formula is: 

– T(1) = c   and

– T(N) = N*T(N/2) + cN
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Recurrence => Code
Answer

• Give a piece of code/pseudocode for which the time 
complexity recursive formula is: 

– T(1) = c   and

– T(N) = N*T(N/2) + cN

20

void foo(int N){ 

if (N <= 1) return;

for(int i=1; i<=N; i++)

foo(N/2);

}
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