Recurrences
(Method 4)

Alexandra Stefan



Recurrences

Recursive algorithms

— It may not be clear what the complexity is, by just looking at the
algorithm.

— In order to find their complexity, we need to:

e Express the “running time” of the algorithm as a recurrence
formula. E.g.:  f(N) =N +f(N-1)

* Find the complexity of the recurrence:
— Expand it to a summation with no recursive term.

— Find a concise expression (or upper bound), E(n), for the
summation.

— Find 0,ideally, or O (big-Oh) for E(n).

Recurrence formulas may be encountered in other situations:
— Compute the number of nodes in certain trees.
— Express the complexity of non-recursive algorithms (e.g. selection sort).
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Common Recurrences

Reduce the problem size by 1 in constant time  T(N) =

Reduce the problem size by 1 in linear time T(N) =
— E.g. Check all items, eliminate 1

Halve problem in constant time T(N) =

Halve problem in linear time T(N) =

Break the problem into 2 halves in constant time T(N) =

Break the problem into 2 halves in linear time  T(N) =




Generic expressions for recurrences

e The common recurrences on the previous slide have a
common-type solution.

* After you solve a couple simple recurrences, consider the
following generic ones:

G1. T(N)=c + k*T(N-s)

G2. T(N)=c + k*T(N/s)

G3. T(N) = N + k*T(N-s)

G4. T(N) = N + k*T(N/s)

* Pay attention to what each constant above affects:
— The recursive term (T(N-s) or T(N/s) ) => number of steps
— c—can beignored

— k—cannot be ignored
— Safer: do not ignore any constant when you expand the recurrence.



More Recurrences

M1. Reduce the problem size by 1 in logarithmic time
—  E.g. Check Ig(N) items, eliminate 1

M_2. Reduce the problem size by 1in N2 time
—  E.g. Check N2 pairs, eliminate 1 item

M3. Algorithm that:
— takes ©(1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes ©(1) time to combine the results.

M4. ** Algorithm that:
— calls itself N times on data of size N/2.
— takes ©(1) time to combine the results.
— This generates a difficult recursion.



Case 1: Reduce the problem size by 1
In constant time

* |n this case, the algorithm proceeds in a
sequence of similar steps, where at each step

eliminates one item.
* Any examples of such an algorithm?



Case 1: Reduce the problem size by 1
In constant time

* |n this case, the algorithm proceeds in a
sequence of similar steps, where at each step

eliminates one item.
* |f the problem size is 1, it takes constant time
to solve it (no recursive call needed).

* Any examples of such an algorithm?
— Sequential search (recursive solution).
— Recursive solution of sum from 1 to N.



Case 1: Reduce the problem size by 1
In constant time

e Let T(N) be the running time.
 Then, T(N) = ???



Case 1: Reduce the problem size by 1
In constant time

e Let T(N) be the running time.
e Then, T(N) =1+ T(N-1)
e AndT(1) =1



Case 1: Reduce the problem size by 1
In constant time

e T(1)=1
e T(N)=T(N-1) +1
e T(N) =1 + T(N-1) (step 1)
=1+ 1 + T(N-2) (step 2)
=1+1+ 1 + T(N-3) (step 3)
=1+1+ ..+ 1 + T(N-1) (step i: i of 1)
1 + 1 + .+ 1+ 1+ T(l) (step N-1)

1 4+ 1 + Y_-|-_1_-|-_1_-|-_1J (step N-1)
N

N
0O (N)

e Conclusion: The algorithm takes linear time.



Case 1:
Eliminating the recursive term

* To compute the number of steps

— We want the term T(N-i) to be T(1) so we want:
—N-i=1=>i=N-1

* Note that if we used a constant c instead of 1,
we would get the same complexity. Look at:

—T(N)=c+T(N-1) and T(1) = c



Case 1: Reduce the problem size by 1
In constant time

* T(N) =T(N-1) +¢c,

 T(N) c
c

C

C

C
C

Cc*N

T(1) =c

+ T (N-1) (step 1)

+ ¢ + T(N-2) (step 2)

+ ¢ + ¢ + T(N-3) (step 3)

+ ¢+ ..+ c + T(N-1) (step i: i of c)
+ ¢c + .+ c+c + T(l) (step N-1)
+ ¢c + . +C+C+C) (step N-1)

|

0O (N)

N terms

e Conclusion: The algorithm takes linear time.



Case 2: Check All Items, Eliminate One

* |n this case, the algorithm proceeds in a
sequence of similar steps, where:

— each step loops through all items in the input, and
eliminates one item.

* Any examples of such an algorithm?
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Case 2: Check All Items, Eliminate One

* |n this case, the algorithm proceeds in a
sequence of similar steps, where:

— each step loops through all items in the input, and
eliminates one item.

* Any examples of such an algorithm?
— Selection Sort.



Case 2: Check All Items, Eliminate One

* Let T(N) be the running time.
* Then, T(N) =???



Case 2: Check All Items, Eliminate One

* Let T(N) be the running time.
* Then, T(N)=T(N-1) + N (assume T(1) =1).

— Because we need to examine all items (N units of time),
and then we need to run the algorithm on N-1 items.



Case 2: Check All Items, Eliminate One

* Let T(N) be the running time.

Then, T(N) = T(N-1) + N (assume T(1)=1).
« T(N) = N + T(N-1)

N + (N-1) + T(N-2)

N + (N-1) + (N-2) + T(N-3)

Hw lin N

I:I+ (N-1) + (N-2)+.. (N-(i-1))+ T(N-1i)

I-.-

Ty 4 (N-1) + .

N + (N-1) + . .
(N*(N + 1)) / 2
(N2 + N)/2

® (N2)

* Conclusion: The algorithm takes quadratic time.

.+ 3+ 2 + T(1)
.+ 3+2+1

g g



Case 2: Check All Items, Eliminate One

e Variation: use T(1)=c (instead of T(1)=1)
* Then, T( ) =T(N-1) + N

- T(N) = N + T(N-1)
Z N + (N-1) + T(N-2)
Z N + (N-1) + (N-2) + T(N-3)
iN+ (N-1) + (N-2)+.. (N-(i-1))+ T(N-i)
e (N-1) + . . . + 3 + 2 + T(1)
[\_[;1

(N-1) + . . . + 3 + 2 + c

+

+

+ (N-1) + +3+2+1+c -1
-1 + (N(N + 1) / 2)
1
N2

+ ((N? + N)/2)

) Conclusion: The algorithm takes quadratic time.

non
®n0 02 2 2.



Case 3: Halve the Problem in
Constant Time

* Perform a constant number of operations, and
then reduce the size of the input by half.

* Any example of such an algorithm?
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Case 3: Halve the Problem in
Constant Time

* Perform a constant number of operations, and
then reduce the size of the input by half.

* Any example of such an algorithm?

— Binary Search.



Case 3: Halve the Problem in Constant
Time

* Whenever we analyze recursive algorithms that “halve
the problem” it will be easier in the mathematical
derivation to write the data size, N, as a power of 2:
N=2n"

* |n this case we can replace one variable for the other.
We can write the expressions in terms of N or n using:
N=2" or n=Ig(N)

* In all the following problems that have a recursive call

for a problem half the size (e.g. T(N) =..T(N/2)...) we
can use either N or n:

— With N: T(N) = ..T(N/2)... = ... T(N/4)... = ...T(N/ 21 ...
— With n: T(2") = ..T(2"Y)... = ..T(2"2)... = ..T(2™) ...
— You can use whichever notation you prefer.



Case 3: Halve the Problem in
Constant Time

* |n this case, each step of the algorithm
consists of:
— performing a constant number of operations, and

then reducing the size of the input by half.
¢« T(27) = ?°2°?



Case 3: Halve the Problem in
Constant Time

* |n this case, each step of the algorithm
consists of:

— performing a constant number of operations, and
then reducing the size of the input by half.
e« T(28) = 1 + T (271
2 + T(272)
3 + T(27°3)

n + T(29)
n + 1.

* O(n) time for N = 2",
e Substituting n with Ig N: O(lg N) time.



Case 4: Halve the Problem in
Linear Time

 Perform alinear (i.e., O(N)) number of
operations, and then reduce the size of the

input by half.
¢ T(N) = 2?27
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Case 4: Halve the Problem in
Linear Time

* Perform a linear (i.e., O(N)) number of
operations, and then reduce the size of the

input by half.

e T(N) T(N/2) + N
T(N/4) + N/2 + N
T(N/8) + N/4 + N/2 + N

1+2+4+ ... +N/4 +N/2 +N
??? (do you recognize this series?)



Case 4: Halve the Problem in
Linear Time

* |n this case, each step of the algorithm consists
of:

— Performing a linear (i.e., O(N)) number of operations,
and then reducing the size of the input by half.
« T(N) T(N/2) + N
T(N/4) + N/2 + N
T(N/8) + N/4 + N/2 + N

1+2+4+ ... +N/4 +N/2 + N
7?7

1 +2+ 4+ ..+ 27 = 2?27
* What is the general formula for the above series?



Case 4: Halve the Problem in
Linear Time

In this case, each step of the algorithm consists
of:

— Performing a linear (i.e., O(N)) number of operations,
and then reducing the size of the input by half.

T(N) = T(N/2) + N
T(N/4) + N/2 + N
T(N/8) + N/4 + N/2 + N

1 +2+4+ ... +N/4 +N/2 + N
about 2N

O(N) time.



Case 5: Break Problem Into Two
Halves in Constant Time

* The algorithm does:

— Constant number of operations to split the
problem into two halves.

— Calls itself recursively on each half.

— Constant number of operations to combine the
two answers.
« T(N) = ?2°?°?
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Case 5: Break Problem Into Two
Halves in Constant Time

* The algorithm does:

— Constant number of operations to split the
problem into two halves.

— Calls itself recursively on each half.

— Constant number of operations to combine the
two answers.

e« T(N) = 2T(N/2) + 1
= 4T(N/4) + 2 + 1
= 8T(N/8) + 4 + 2 + 1

about 2N



Case 6: Break Problem Into Two
Halves in Linear Time

* The algorithm does:
— N operations to split the problem into two halves.
— Calls itself recursively on each half.

— N operations to combine the two answers.
e T(N) = ?2°?°?
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Case 6: Break Problem Into Two
Halves in Linear Time

* The algorithm does:
— N operations to split the problem into two halves.
— Calls itself recursively on each half.

— N operations to combine the two answers.
« T(N) 2T (N/2) + N
AT (N/4) + N + N
8T(N/8) + N+ N + N

N lg N



Case 6: Break Problem Into Two
Halves in Linear Time

* The algorithm does:
— N operations to split the problem into two halves.
— Calls itself recursively on each half.
— N operations to combine the two answers.

* Example?



‘General’ recurrence expressions

G1. T(N)=c + k*T(N-s)
G2. T(N)=c +k*T(N/s)
G3. T(N) =N + k*T(N-s)
G4. T(N) =N + k*T(N/s)

Pay attention to what each constant above affects:
The recursive term (T(N-s) or T(N/s) ) => number of steps
c —can be ignored
k — cannot be ignored
Safer: do not ignore any constant when you expand the recurrence.



Solving Recurrences: Example M1

 Example that produces the function we just
analyzed: T(N) = Y n_q k2



Solving Recurrences: Example M1

e Suppose that we have an algorithm that at
each step:

— takes O(N?) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

* How do we write this recurrence?



Solving Recurrences: Example M1

e Suppose that we have an algorithm that at each step:
— takes O(N?) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

e How do we write this recurrence?
« T(N) = T(N—1) + N?
= T(N —2)+ (N —1)*+N?
=T(N—-3) +(N—-2)?+(N—1)2 + N?

= 12 + 22 + .. + N?
= Z’,le k?. How do we approximate that?



Solving Recurrences: Example M1

* We approximate Z’,le k? using an integral:

* Clearly, f(x) = x?isa monotonically
increasing function.
N N+1

* SO, Yp=1 K2 < [,
__ N°+2N°4+2N+1-1

_ 3 = O(N3)

N+1)3-13
xidx = (V+1)




Solving Recurrences: Example M2



Solving Recurrences: Example M2

e Suppose that we have an algorithm that at
each step:

— takes O (Ig(N)) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

* How do we write this recurrence?



Solving Recurrences: Example M2

e Suppose that we have an algorithm that at each step:
— takes O (lg(N)) time to go over N items.

— eliminates one item and then calls itself with the
remaining data.

e How do we write this recurrence?
« T(N) = T(N —1)+1g(N)

=T(N—-2)+1g(N—-1)+1g(N)
=T(N—-3)+1g(N—-2)+1g(N—-1)+ 1g(N)

= 1g(1) + 1g(2) + ... + 1g(N)
=YyN_,lg(k). How do we compute that?



Solving Recurrences: Example M2

* We process Y n—q1 Lg (k) using the fact that:
lg(a) + lg(b) = lg(ab)

+ Yioilgk) =1g(1) +1g(2) + ... +1g(N)
lg(N!)

Ig())

Nlg(%)

= NIg(N) - Nlg(e) = O(NIg(N))

1l



Solving Recurrences: Example M3



Solving Recurrences: Example M3

e Suppose that we have an algorithm that at
each step:

— takes © (1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O (1) time to combine the results.

* How do we write this recurrence?



Solving Recurrences: Example M3

* Suppose that we have an algorithm that at each step:
— takes O (1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O (1) time to combine the results.

e How do we write this recurrence?
¢ T(N) = 3T(N — 1) +1 (why use ‘+1’ and not ‘+2’7?)

=32T(N—-2)+3+1
= BT(N—-3)+32+3+1

=317 (D) + 3\""2 +3V3 4+ 3V 4t }

Note: T(1) is just a constant  finite summation
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Solving Recurrences: Example M3

e Suppose that we have an algorithm that at each step:
— takes O (1) time to go over N items.
— calls itself 3 times on data of size N-1.
— takes O (1) time to combine the results.

* How do we write this recurrence?
T(N) =3T(N-1)+1
=32T(N—-2)+3+1
=33T(N—-3)+32+3+1

=3V IT(M) +3" 2 +3V 3 + 3V 4. 41
=0(3N) +0(3") = 0(3")



Solving Recurrences

T(1) =20

T(N) = T(g) + NS
() + (3) + e

) () o

) ) e G () o

: Example M4



Solving Recurrences: Example M4

— T(l) + (211:’_1)6 4+ o4 (2%)6 + (g)6 + N© (Step n)
<204 () 4 () (3 Pl o
=20 + N[ (2n1—1)6 4ot (2%)6 + (%)6 +1] reorder

a1 1) 1\°
=20 + N®[1+ > + 52 + - + o1 ]
notice the increasing exponents. We will try to produce summation 1 + x! + x2+ .. + x

n-—1

1

6 2
1 : 1 : :
We use: (2—2) = (;) . The advantage now is that(;) can be used as x in the summation above

=20 + NS[1 + (216)1 + (i)2 + ot (1)n_1]

26 26
Since (2—16) <L, >1+x'+x*+.+x"! <1/(1x) =
6 1 1 _
<20 +N°® % 1/[1— (;)] Here 20 and 1/[1- (;)] are constants and can be ignored.

= O(N®) (Notethat N® < T(N)< N xct)



Common Recurrences Review

Reduce the problem size by 1 in constant time
O(N)

Reduce the problem size by 1 in linear time
O( N?)

Halve problem in constant time

O(1g(N) )
Halve problem in linear time
O(N) (~2N)

Break the problem into 2 halves in constant time
O(N) (~2N)

Break the problem into 2 halves in linear time
O( N Ig(N) )




