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Recurrences 
• Recursive algorithms 

– It may not be clear what the complexity is, by just looking at the 
algorithm. 
 

– In order to find their complexity, we need to: 
• Express the “running time” of the algorithm as a recurrence 

formula. E.g.:      f(N) = N + f(N-1) 
• Find the complexity of the recurrence:  

– Expand it to a summation with no recursive term. 
– Find a concise expression (or upper bound), E(n), for the 

summation. 
– Find 𝛩,ideally, or O (big-Oh) for E(n). 

 

• Recurrence formulas may be encountered in other situations: 
– Compute the number of nodes in certain trees. 
– Express the complexity of non-recursive algorithms (e.g. selection sort). 
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Common Recurrences 

1. Reduce the problem size by 1 in constant time      T(N) =   

2. Reduce the problem size by 1 in linear time           T(N) =  

– E.g. Check all items, eliminate 1 

3. Halve problem in constant time                                T(N) =  

4. Halve problem in linear time                                     T(N) =  

5. Break the problem into 2 halves in constant time T(N) =  

6. Break the problem into 2 halves in linear time       T(N) =  
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Generic expressions for recurrences 
• The common recurrences on the previous slide have a 

common-type solution.  

• After you solve a couple simple recurrences, consider the 
following generic ones: 

G1.  T(N) = c  + k*T(N-s)     

G2.  T(N) = c  + k*T(N/s) 

G3.  T(N) = N + k*T(N-s)     

G4.  T(N) = N + k*T(N/s) 

• Pay attention to what each constant above affects: 
– The recursive term (T(N-s) or T(N/s) ) => number of steps 

– c – can be ignored 

– k – cannot be ignored 

– Safer: do not ignore any constant when you expand the recurrence. 
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More Recurrences 
 
M1. Reduce the problem size by 1 in logarithmic time 

– E.g. Check lg(N) items, eliminate 1 
 

M2. Reduce the problem size by 1 in 𝑁2 time 
– E.g. Check 𝑁2 pairs, eliminate 1 item 
 

M3. Algorithm that: 
–  takes Θ(1) time to go over N items. 
– calls itself 3 times on data of size N-1. 
– takes Θ(1) time to combine the results. 
 

M4. ** Algorithm that: 
– calls itself N times on data of size N/2. 
– takes Θ(1) time to combine the results. 
– This generates a difficult recursion. 
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Case 1: Reduce the problem size by 1 
in constant time 

• In this case, the algorithm proceeds in a 
sequence of similar steps, where at each step 
eliminates one item. 

• Any examples of such an algorithm? 
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Case 1: Reduce the problem size by 1 
in constant time 

• In this case, the algorithm proceeds in a 
sequence of similar steps, where at each step 
eliminates one item. 

• If the problem size is 1, it takes constant time 
to solve it (no recursive call needed). 

• Any examples of such an algorithm? 

– Sequential search (recursive solution). 

– Recursive solution of sum from 1 to N. 
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Case 1: Reduce the problem size by 1 
in constant time 

• Let T(N) be the running time. 

• Then, T(N) = ??? 

8 



Case 1: Reduce the problem size by 1 
in constant time 

• Let T(N) be the running time. 

• Then, T(N) = 1 + T(N-1) 

• And T(1) = 1 
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Case 1: Reduce the problem size by 1 
in constant time 

• T(1) = 1   

• T(N) = T(N-1) + 1 
• T(N) = 1 + T(N-1)                 (step 1) 

     = 1 + 1 + T(N-2)             (step 2) 

     = 1 + 1 + 1 + T(N-3)           (step 3) 

     ... 

     = 1 + 1 + … + 1 + T(N-i)    (step i: i of 1) 

   ... 

       = 1 + 1 + . . . + 1 + 1 + T(1) (step N-1)       

   = 1 + 1 + . . . + 1 + 1 + 1    (step N-1) 

       = N 

       = 𝚯(N) 

• Conclusion: The algorithm takes linear time. 10 
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Case 1:  
Eliminating the recursive term 

• To compute the number of steps 

– We want the term T(N-i) to be  T(1) so we want: 

– N-i = 1 => i = N-1 

 

• Note that if we used a constant c instead of 1, 
we would get the same complexity. Look at: 

– T(N) = c + T(N-1) and T(1) = c 
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Case 1: Reduce the problem size by 1 
in constant time 

• T(N) = T(N-1) + c,     T(1) = c 
• T(N) = c + T(N-1)                 (step 1) 

     = c + c + T(N-2)             (step 2) 

     = c + c + c + T(N-3)           (step 3) 

     ... 

     = c + c + … + c + T(N-i)    (step i: i of c) 

   ... 

       = c + c + . . . + c + c + T(1) (step N-1)       

   = c + c + . . . + c + c + c    (step N-1) 

       = c*N 

       = 𝚯(N) 

• Conclusion: The algorithm takes linear time. 
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Case 2: Check All Items, Eliminate One 

• In this case, the algorithm proceeds in a 
sequence of similar steps, where: 

– each step loops through all items in the input, and 
eliminates one item. 

• Any examples of such an algorithm? 
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Case 2: Check All Items, Eliminate One 

• In this case, the algorithm proceeds in a 
sequence of similar steps, where: 

– each step loops through all items in the input, and 
eliminates one item. 

• Any examples of such an algorithm? 

– Selection Sort. 
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Case 2: Check All Items, Eliminate One 
• Let T(N) be the running time. 

• Then, T(N) = ??? 
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Case 2: Check All Items, Eliminate One 
• Let T(N) be the running time. 

• Then, T(N) = T(N-1) + N   (assume T(1) = 1 ).  

– Because we need to examine all items (N units of time), 
and then we need to run the algorithm on N-1 items. 
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Case 2: Check All Items, Eliminate One 
• Let T(N) be the running time. 

• Then, T(N) = T(N-1) + N   (assume T(1) = 1 ).  
• T(N) = N + T(N-1)  

     = N + (N-1) + T(N-2) 

     = N + (N-1) + (N-2) + T(N-3) 

       ... 

       = N + (N-1) + (N-2)+… (N-(i-1))+ T(N-i) 

   ... 

       = N + (N-1) + . . . + 3 + 2 + T(1) 

       = N + (N-1) + . . . + 3 + 2 + 1 

       = (N*(N + 1)) / 2 

       = (N2 + N)/2 

       = 𝚯(N2) 

• Conclusion: The algorithm takes quadratic time. 17 
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Case 2: Check All Items, Eliminate One 
• Variation:  use T(1) = c    (instead of T(1) = 1 ) 

• Then, T(N) = T(N-1) + N 
• T(N) = N + T(N-1)  

     = N + (N-1) + T(N-2) 

     = N + (N-1) + (N-2) + T(N-3) 

       ... 

       = N + (N-1) + (N-2)+… (N-(i-1))+ T(N-i) 

   ... 

       = N + (N-1) + . . . + 3 + 2 + T(1) 

       = N + (N-1) + . . . + 3 + 2 + c 

       = N + (N-1) + . . . + 3 + 2 + 1 + c -1  

       = c-1 + (N(N + 1) / 2)  

       = c-1 + ((N2 + N)/2) 

       = 𝚯(N2)    Conclusion: The algorithm takes quadratic time. 
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Case 3: Halve the Problem in 
Constant Time 

• Perform a constant number of operations, and 
then reduce the size of the input by half. 

• Any example of such an algorithm? 
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Case 3: Halve the Problem in 
Constant Time 

• Perform a constant number of operations, and 
then reduce the size of the input by half. 

• Any example of such an algorithm? 

– Binary Search. 
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Case 3: Halve the Problem in Constant 
Time 

• Whenever we analyze recursive algorithms that “halve 
the problem” it will be easier in the mathematical 
derivation to write the data size, N, as a power of 2:      
N = 2n 

• In this case we can replace one variable for the other. 
We can write the expressions in terms of N or n using:  
N = 2n  or  n = lg(N) 

• In all the following problems that have a recursive call 
for a problem half the size (e.g. T(N) = …T(N/2)…) we 
can use either N or n: 
– With N: T(N) = …T(N/2)... = … T(N/4)… = …T(N/ 2i) … 
– With n: T(2n) = …T(2n-1)… = …T(2n-2)… = …T(2n-i) … 
– You can use whichever notation you prefer. 
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• In this case, each step of the algorithm 
consists of:  

– performing a constant number of operations, and 
then reducing the size of the input by half. 

• T(2n) = ??? 
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Case 3: Halve the Problem in 
Constant Time 



• In this case, each step of the algorithm 
consists of:  

– performing a constant number of operations, and 
then reducing the size of the input by half. 

• T(2n) = 1 + T(2n-1) 

      = 2 + T(2n-2) 

      = 3 + T(2n-3) 

      ... 

      = n + T(20) 

      = n + 1. 

• Θ(n) time for N = 2n. 

• Substituting n with lg N: Θ(lg N) time. 23 
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Constant Time 



Case 4: Halve the Problem in 
Linear Time 

• Perform a linear (i.e., O(N)) number of 
operations, and then reduce the size of the 
input by half. 

• T(N) = ??? 
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Case 4: Halve the Problem in 
Linear Time 

• Perform a linear (i.e., O(N)) number of 
operations, and then reduce the size of the 
input by half. 

• T(N) = T(N/2) + N 

     = T(N/4) + N/2 + N 

     = T(N/8) + N/4 + N/2 + N 

     ... 

     = 1 + 2 + 4 + ... + N/4 + N/2 + N 

     = ??? (do you recognize this series?) 
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Case 4: Halve the Problem in 
Linear Time 

• In this case, each step of the algorithm consists 
of: 
– Performing a linear (i.e., O(N)) number of operations, 

and then reducing the size of the input by half. 
• T(N) = T(N/2) + N 

     = T(N/4) + N/2 + N 

     = T(N/8) + N/4 + N/2 + N 

     ... 

     = 1 + 2 + 4 + ... + N/4 + N/2 + N 

     = ???  
 

• 1 + 2 + 4 + … + 2n = ??? 

• What is the general formula for the above series? 
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Case 4: Halve the Problem in 
Linear Time 

• In this case, each step of the algorithm consists 
of: 

– Performing a linear (i.e., O(N)) number of operations, 
and then reducing the size of the input by half. 

• T(N) = T(N/2) + N 

     = T(N/4) + N/2 + N 

     = T(N/8) + N/4 + N/2 + N 

     ... 

     = 1 + 2 + 4 + ... + N/4 + N/2 + N 

     = about 2N 

• Θ(N) time. 
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Case 5: Break Problem Into Two 
Halves in Constant Time 

• The algorithm does: 

– Constant number of operations to split the 
problem into two halves. 

– Calls itself recursively on each half. 

– Constant number of operations to combine the 
two answers. 

• T(N) = ??? 
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Case 5: Break Problem Into Two 
Halves in Constant Time 

• The algorithm does: 
– Constant number of operations to split the 

problem into two halves. 

– Calls itself recursively on each half. 

– Constant number of operations to combine the 
two answers. 

• T(N) = 2T(N/2) + 1  

     = 4T(N/4) + 2 + 1 

     = 8T(N/8) + 4 + 2 + 1 

     ... 

     = about 2N  
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Case 6: Break Problem Into Two 
Halves in Linear Time 

• The algorithm does: 

– N operations to split the problem into two halves. 

– Calls itself recursively on each half. 

– N operations to combine the two answers. 
• T(N) = ??? 
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Case 6: Break Problem Into Two 
Halves in Linear Time 

• The algorithm does: 

– N operations to split the problem into two halves. 

– Calls itself recursively on each half. 

– N operations to combine the two answers. 
• T(N) = 2T(N/2) + N 

     = 4T(N/4) + N + N 

     = 8T(N/8) + N + N + N 

     ... 

     = N lg N 
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Case 6: Break Problem Into Two 
Halves in Linear Time 

• The algorithm does: 

– N operations to split the problem into two halves. 

– Calls itself recursively on each half. 

– N operations to combine the two answers. 

• Example? 
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‘General’ recurrence expressions 

G1.  T(N) = c  + k*T(N-s)     

G2.  T(N) = c  + k*T(N/s) 

G3.  T(N) = N + k*T(N-s)     

G4.  T(N) = N + k*T(N/s) 

 
Pay attention to what each constant above affects: 

The recursive term (T(N-s) or T(N/s) ) => number of steps 
c – can be ignored 
k – cannot be ignored 
Safer: do not ignore any constant when you expand the recurrence. 
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Solving Recurrences: Example M1 

• Example that produces the function we just 

analyzed:  T(N) =  𝒌𝟐𝑵
𝒌=𝟏  
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Solving Recurrences: Example M1 

• Suppose that we have an algorithm that at 
each step: 

–  takes O(N2) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 
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• Suppose that we have an algorithm that at each step: 
–  takes O(N2) time to go over N items. 
– eliminates one item and then calls itself with the 

remaining data. 

• How do we write this recurrence? 

• 𝑇(𝑁)  =  𝑇(𝑁 − 1) +  𝑁2 
            =  𝑇 𝑁 − 2 + (𝑁 − 1)2+𝑁2 

       = 𝑇(𝑁 − 3)  + (𝑁 − 2)2+ (𝑁 − 1)2 + 𝑁2 

                 … 

                 =  12 +  22
 
+ … +  𝑁2  

       =  𝑘2𝑁
𝑘=1 .   How do we approximate that? 
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Solving Recurrences: Example M1 



• We approximate  𝒌𝟐𝑵
𝒌=𝟏  using an integral: 

 

• Clearly, 𝑓(𝑥)  =  𝑥2 is a monotonically 
increasing function. 

• So,  𝑘2𝑁
𝑘=1 ≤  𝑥2𝑑𝑥

𝑁+1

1
= 

𝑁+1 3 −13

3
 

                         =
𝛮3+2𝛮2+2𝛮+1 −1

3
=  𝛩(𝑁3) 
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Solving Recurrences: Example M2 
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Solving Recurrences: Example M2 

• Suppose that we have an algorithm that at 
each step: 

–  takes Θ (lg(N)) time to go over N items. 

– eliminates one item and then calls itself with the 
remaining data. 

• How do we write this recurrence? 
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Solving Recurrences: Example M2 

• Suppose that we have an algorithm that at each step: 
–  takes Θ (lg(N)) time to go over N items. 
– eliminates one item and then calls itself with the 

remaining data. 

• How do we write this recurrence? 
• 𝑇(𝑁)  =  𝑇(𝑁 − 1) + lg (𝑁) 

                 =  𝑇(𝑁 − 2) + lg (𝑁 − 1) + lg (𝑁) 

                 =  𝑇(𝑁 − 3) + lg (𝑁 − 2) + lg (𝑁 − 1) +  lg (𝑁) 

                 … 

                 =  lg (1)  +  lg (2)  + … +  lg (𝑁) 

       =  𝑙𝑔(𝑘)𝑁
𝑘=1 .   How do we compute that? 
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Solving Recurrences: Example M2 

• We process  𝒍𝒈(𝒌) 𝑵
𝒌=𝟏 using the fact that: 

 lg (𝑎)  +  lg (𝑏)  =  lg (𝑎𝑏) 
 

•  lg(k) N
k=1 = lg 1 + lg 2  + … + lg N  

                            =  lg (𝑁!) 

                            ≌  lg ((
𝑁

𝑒
)𝑁) 

                            = 𝑁 lg (
𝑁

𝑒
)  

                            = 𝑁 lg 𝑁 –  𝑁 lg 𝑒 = 𝛩(𝑁 lg 𝑁 ) 
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Solving Recurrences: Example M3 
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Solving Recurrences: Example M3 

• Suppose that we have an algorithm that at 
each step: 

–  takes Θ (1) time to go over N items. 

– calls itself 3 times on data of size N-1. 

– takes Θ (1) time to combine the results. 

• How do we write this recurrence? 
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Solving Recurrences: Example M3 
• Suppose that we have an algorithm that at each step: 

–  takes Θ (1) time to go over N items. 

– calls itself 3 times on data of size N-1. 

– takes Θ (1) time to combine the results. 

• How do we write this recurrence? 
• 𝑇(𝑁)  = 3𝑇(𝑁 − 1) + 1      (why use ‘+1’ and not ‘+2’?) 

                 = 32𝑇(𝑁 − 2) + 3 + 1 

                 = 33𝑇(𝑁 − 3) + 32 + 3 + 1 

                 … 

                 = 3𝑁−1𝑇 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1 

       

44 
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Solving Recurrences: Example M3 

• Suppose that we have an algorithm that at each step: 
–  takes Θ (1) time to go over N items. 
– calls itself 3 times on data of size N-1. 
– takes Θ (1) time to combine the results. 

• How do we write this recurrence? 
• 𝑇(𝑁)  = 3𝑇(𝑁 − 1) + 1 

                 = 32𝑇 𝑁 − 2 + 3 + 1 

                 = 33𝑇 𝑁 − 3 + 32 + 3 + 1 

                 … 

                 = 3𝑁−1𝑇 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1 

      = O 3𝑁 + O 3𝑁 = O(3𝑁) 
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Solving Recurrences: Example M4 

𝑇 1 = 20 

𝑇 𝑁 = 𝑇
𝑁

2
+ 𝑁6                                                          Step

 
1 

=  𝑇
𝑁

22
+ 

𝑁

2

6

+𝑁6                                                   Step
 
2 

=  𝑇
𝑁

23
+

𝑁

22

6

+ 
𝑁

2

6

+ 𝑁6                                   Step
 
3 

   …      

= 𝑇
𝑁

2𝑖
+

𝑁

2𝑖−1

6

+⋯+
𝑁

22

6

+ 
𝑁

2

6

+ 𝑁6       Step
 
i 

… 

= 𝑇(1) +
𝑁

2𝑛−1

6

+⋯+
𝑁

22

6

+ 
𝑁

2

6

+𝑁6           Step
 
n 
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Solving Recurrences: Example M4 
= 𝑇(1) +

𝑁

2𝑛−1

6
+⋯+

𝑁

22

6
+ 

𝑁

2

6
+ 𝑁6                      (Step

 
n)     

= 20 +
𝑁

2𝑛−1

6
+⋯+

𝑁

22

6
+ 

𝑁

2

6
+ 𝑁6                            Pull out  N6   

= 20 + 𝑁6[ 
1

2𝑛−1

6
+⋯+

1

22

6
+ 

1

2

6
+ 1]                       reorder 

= 20 + 𝑁6[1 +
1

2

6

+ 
1

22

6

+⋯ +  
1

2𝑛−1

6

]    

notice the increasing exponents. We will try to produce summation 1 + 𝑥1 + 𝑥2+ ... + 𝑥𝑛−1 

We use: 
1

22

6
 = 

1

26

2
. The advantage now is that

1

26
 can be used as x in the summation above 

= 20 + 𝑁6[1 +
1

26

1
+

1

26

2
+⋯+

1

26

𝑛−1
]       

Since  
1

26
 <1, ⇒ 1 + 𝑥1 + 𝑥2+ ... + 𝑥𝑛−1  ≤ 1/(1-x) ⇒ 

 ≤ 20 + 𝑁6  ∗  1/[1−
1

26
]                 Here   20  and  1/[1−

1

26
] are constants and can be ignored. 

= 𝛩 𝑁6     (Note that  𝑁6 ≤ 𝑇(𝑁) ≤ 𝑁6 ∗ ct) 
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Common Recurrences Review 
1. Reduce the problem size by 1 in constant time  

   Θ( N) 

2. Reduce the problem size by 1 in linear time  
   Θ( N2 ) 

3. Halve problem in constant time 
 Θ( lg(N) ) 

4. Halve problem in linear time 
 Θ(N)                   (~2N) 

5. Break the problem into 2 halves in constant time 
  Θ(N)   (~2N) 

6. Break the problem into 2 halves in linear time 
  Θ( N lg(N) ) 
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