
Recurrences
(Method 4)

Alexandra Stefan

Recurrences
• Recursive algorithms

– It may not be clear what the complexity is, by just looking at the
algorithm.

– In order to find their complexity, we need to:
• Express the “running time” of the algorithm as a recurrence

formula. E.g.: f(N) = N + f(N-1)
• Find the complexity of the recurrence:

– Expand it to a summation with no recursive term.
– Find a concise expression (or upper bound), E(n), for the

summation.
– Find 𝛩,ideally, or O (big-Oh) for E(n).

• Recurrence formulas may be encountered in other situations:
– Compute the number of nodes in certain trees.
– Express the complexity of non-recursive algorithms (e.g. selection sort).

2

Common Recurrences

1. Reduce the problem size by 1 in constant time T(N) =

2. Reduce the problem size by 1 in linear time T(N) =

– E.g. Check all items, eliminate 1

3. Halve problem in constant time T(N) =

4. Halve problem in linear time T(N) =

5. Break the problem into 2 halves in constant time T(N) =

6. Break the problem into 2 halves in linear time T(N) =
3

Generic expressions for recurrences
• The common recurrences on the previous slide have a

common-type solution.

• After you solve a couple simple recurrences, consider the
following generic ones:

G1. T(N) = c + k*T(N-s)

G2. T(N) = c + k*T(N/s)

G3. T(N) = N + k*T(N-s)

G4. T(N) = N + k*T(N/s)

• Pay attention to what each constant above affects:
– The recursive term (T(N-s) or T(N/s)) => number of steps

– c – can be ignored

– k – cannot be ignored

– Safer: do not ignore any constant when you expand the recurrence.
4

More Recurrences

M1. Reduce the problem size by 1 in logarithmic time

– E.g. Check lg(N) items, eliminate 1

M2. Reduce the problem size by 1 in 𝑁2 time
– E.g. Check 𝑁2 pairs, eliminate 1 item

M3. Algorithm that:
– takes Θ(1) time to go over N items.
– calls itself 3 times on data of size N-1.
– takes Θ(1) time to combine the results.

M4. ** Algorithm that:
– calls itself N times on data of size N/2.
– takes Θ(1) time to combine the results.
– This generates a difficult recursion.

5

Case 1: Reduce the problem size by 1
in constant time

• In this case, the algorithm proceeds in a
sequence of similar steps, where at each step
eliminates one item.

• Any examples of such an algorithm?

6

Case 1: Reduce the problem size by 1
in constant time

• In this case, the algorithm proceeds in a
sequence of similar steps, where at each step
eliminates one item.

• If the problem size is 1, it takes constant time
to solve it (no recursive call needed).

• Any examples of such an algorithm?

– Sequential search (recursive solution).

– Recursive solution of sum from 1 to N.

7

Case 1: Reduce the problem size by 1
in constant time

• Let T(N) be the running time.

• Then, T(N) = ???

8

Case 1: Reduce the problem size by 1
in constant time

• Let T(N) be the running time.

• Then, T(N) = 1 + T(N-1)

• And T(1) = 1

9

Case 1: Reduce the problem size by 1
in constant time

• T(1) = 1

• T(N) = T(N-1) + 1
• T(N) = 1 + T(N-1) (step 1)

 = 1 + 1 + T(N-2) (step 2)

 = 1 + 1 + 1 + T(N-3) (step 3)

 ...

 = 1 + 1 + … + 1 + T(N-i) (step i: i of 1)

 ...

 = 1 + 1 + . . . + 1 + 1 + T(1) (step N-1)

 = 1 + 1 + . . . + 1 + 1 + 1 (step N-1)

 = N

 = 𝚯(N)

• Conclusion: The algorithm takes linear time. 10

N

Case 1:
Eliminating the recursive term

• To compute the number of steps

– We want the term T(N-i) to be T(1) so we want:

– N-i = 1 => i = N-1

• Note that if we used a constant c instead of 1,
we would get the same complexity. Look at:

– T(N) = c + T(N-1) and T(1) = c

11

Case 1: Reduce the problem size by 1
in constant time

• T(N) = T(N-1) + c, T(1) = c
• T(N) = c + T(N-1) (step 1)

 = c + c + T(N-2) (step 2)

 = c + c + c + T(N-3) (step 3)

 ...

 = c + c + … + c + T(N-i) (step i: i of c)

 ...

 = c + c + . . . + c + c + T(1) (step N-1)

 = c + c + . . . + c + c + c (step N-1)

 = c*N

 = 𝚯(N)

• Conclusion: The algorithm takes linear time.
12

N terms

Case 2: Check All Items, Eliminate One

• In this case, the algorithm proceeds in a
sequence of similar steps, where:

– each step loops through all items in the input, and
eliminates one item.

• Any examples of such an algorithm?

13

Case 2: Check All Items, Eliminate One

• In this case, the algorithm proceeds in a
sequence of similar steps, where:

– each step loops through all items in the input, and
eliminates one item.

• Any examples of such an algorithm?

– Selection Sort.

14

Case 2: Check All Items, Eliminate One
• Let T(N) be the running time.

• Then, T(N) = ???

15

Case 2: Check All Items, Eliminate One
• Let T(N) be the running time.

• Then, T(N) = T(N-1) + N (assume T(1) = 1).

– Because we need to examine all items (N units of time),
and then we need to run the algorithm on N-1 items.

16

Case 2: Check All Items, Eliminate One
• Let T(N) be the running time.

• Then, T(N) = T(N-1) + N (assume T(1) = 1).
• T(N) = N + T(N-1)

 = N + (N-1) + T(N-2)

 = N + (N-1) + (N-2) + T(N-3)

 ...

 = N + (N-1) + (N-2)+… (N-(i-1))+ T(N-i)

 ...

 = N + (N-1) + . . . + 3 + 2 + T(1)

 = N + (N-1) + . . . + 3 + 2 + 1

 = (N*(N + 1)) / 2

 = (N2 + N)/2

 = 𝚯(N2)

• Conclusion: The algorithm takes quadratic time. 17

1

i

2

N-1

3

N-1

Case 2: Check All Items, Eliminate One
• Variation: use T(1) = c (instead of T(1) = 1)

• Then, T(N) = T(N-1) + N
• T(N) = N + T(N-1)

 = N + (N-1) + T(N-2)

 = N + (N-1) + (N-2) + T(N-3)

 ...

 = N + (N-1) + (N-2)+… (N-(i-1))+ T(N-i)

 ...

 = N + (N-1) + . . . + 3 + 2 + T(1)

 = N + (N-1) + . . . + 3 + 2 + c

 = N + (N-1) + . . . + 3 + 2 + 1 + c -1

 = c-1 + (N(N + 1) / 2)

 = c-1 + ((N2 + N)/2)

 = 𝚯(N2) Conclusion: The algorithm takes quadratic time.
18

1

i

2

N-1

3

N-1

Case 3: Halve the Problem in
Constant Time

• Perform a constant number of operations, and
then reduce the size of the input by half.

• Any example of such an algorithm?

19

Case 3: Halve the Problem in
Constant Time

• Perform a constant number of operations, and
then reduce the size of the input by half.

• Any example of such an algorithm?

– Binary Search.

20

Case 3: Halve the Problem in Constant
Time

• Whenever we analyze recursive algorithms that “halve
the problem” it will be easier in the mathematical
derivation to write the data size, N, as a power of 2:
N = 2n

• In this case we can replace one variable for the other.
We can write the expressions in terms of N or n using:
N = 2n or n = lg(N)

• In all the following problems that have a recursive call
for a problem half the size (e.g. T(N) = …T(N/2)…) we
can use either N or n:
– With N: T(N) = …T(N/2)... = … T(N/4)… = …T(N/ 2i) …
– With n: T(2n) = …T(2n-1)… = …T(2n-2)… = …T(2n-i) …
– You can use whichever notation you prefer.

21

• In this case, each step of the algorithm
consists of:

– performing a constant number of operations, and
then reducing the size of the input by half.

• T(2n) = ???

22

Case 3: Halve the Problem in
Constant Time

• In this case, each step of the algorithm
consists of:

– performing a constant number of operations, and
then reducing the size of the input by half.

• T(2n) = 1 + T(2n-1)

 = 2 + T(2n-2)

 = 3 + T(2n-3)

 ...

 = n + T(20)

 = n + 1.

• Θ(n) time for N = 2n.

• Substituting n with lg N: Θ(lg N) time. 23

Case 3: Halve the Problem in
Constant Time

Case 4: Halve the Problem in
Linear Time

• Perform a linear (i.e., O(N)) number of
operations, and then reduce the size of the
input by half.

• T(N) = ???

24

Case 4: Halve the Problem in
Linear Time

• Perform a linear (i.e., O(N)) number of
operations, and then reduce the size of the
input by half.

• T(N) = T(N/2) + N

 = T(N/4) + N/2 + N

 = T(N/8) + N/4 + N/2 + N

 ...

 = 1 + 2 + 4 + ... + N/4 + N/2 + N

 = ??? (do you recognize this series?)

25

Case 4: Halve the Problem in
Linear Time

• In this case, each step of the algorithm consists
of:
– Performing a linear (i.e., O(N)) number of operations,

and then reducing the size of the input by half.
• T(N) = T(N/2) + N

 = T(N/4) + N/2 + N

 = T(N/8) + N/4 + N/2 + N

 ...

 = 1 + 2 + 4 + ... + N/4 + N/2 + N

 = ???

• 1 + 2 + 4 + … + 2n = ???

• What is the general formula for the above series?

26

Case 4: Halve the Problem in
Linear Time

• In this case, each step of the algorithm consists
of:

– Performing a linear (i.e., O(N)) number of operations,
and then reducing the size of the input by half.

• T(N) = T(N/2) + N

 = T(N/4) + N/2 + N

 = T(N/8) + N/4 + N/2 + N

 ...

 = 1 + 2 + 4 + ... + N/4 + N/2 + N

 = about 2N

• Θ(N) time.
27

Case 5: Break Problem Into Two
Halves in Constant Time

• The algorithm does:

– Constant number of operations to split the
problem into two halves.

– Calls itself recursively on each half.

– Constant number of operations to combine the
two answers.

• T(N) = ???

28

Case 5: Break Problem Into Two
Halves in Constant Time

• The algorithm does:
– Constant number of operations to split the

problem into two halves.

– Calls itself recursively on each half.

– Constant number of operations to combine the
two answers.

• T(N) = 2T(N/2) + 1

 = 4T(N/4) + 2 + 1

 = 8T(N/8) + 4 + 2 + 1

 ...

 = about 2N

29

Case 6: Break Problem Into Two
Halves in Linear Time

• The algorithm does:

– N operations to split the problem into two halves.

– Calls itself recursively on each half.

– N operations to combine the two answers.
• T(N) = ???

30

Case 6: Break Problem Into Two
Halves in Linear Time

• The algorithm does:

– N operations to split the problem into two halves.

– Calls itself recursively on each half.

– N operations to combine the two answers.
• T(N) = 2T(N/2) + N

 = 4T(N/4) + N + N

 = 8T(N/8) + N + N + N

 ...

 = N lg N

31

Case 6: Break Problem Into Two
Halves in Linear Time

• The algorithm does:

– N operations to split the problem into two halves.

– Calls itself recursively on each half.

– N operations to combine the two answers.

• Example?

32

‘General’ recurrence expressions

G1. T(N) = c + k*T(N-s)

G2. T(N) = c + k*T(N/s)

G3. T(N) = N + k*T(N-s)

G4. T(N) = N + k*T(N/s)

Pay attention to what each constant above affects:

The recursive term (T(N-s) or T(N/s)) => number of steps
c – can be ignored
k – cannot be ignored
Safer: do not ignore any constant when you expand the recurrence.

33

Solving Recurrences: Example M1

• Example that produces the function we just

analyzed: T(N) = 𝒌𝟐𝑵
𝒌=𝟏

34

Solving Recurrences: Example M1

• Suppose that we have an algorithm that at
each step:

– takes O(N2) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?

35

• Suppose that we have an algorithm that at each step:
– takes O(N2) time to go over N items.
– eliminates one item and then calls itself with the

remaining data.

• How do we write this recurrence?

• 𝑇(𝑁) = 𝑇(𝑁 − 1) + 𝑁2
 = 𝑇 𝑁 − 2 + (𝑁 − 1)2+𝑁2

 = 𝑇(𝑁 − 3) + (𝑁 − 2)2+ (𝑁 − 1)2 + 𝑁2

 …

 = 12 + 22

+ … + 𝑁2

 = 𝑘2𝑁
𝑘=1 . How do we approximate that?

36

Solving Recurrences: Example M1

• We approximate 𝒌𝟐𝑵
𝒌=𝟏 using an integral:

• Clearly, 𝑓(𝑥) = 𝑥2 is a monotonically
increasing function.

• So, 𝑘2𝑁
𝑘=1 ≤ 𝑥2𝑑𝑥

𝑁+1

1
=

𝑁+1 3 −13

3

 =
𝛮3+2𝛮2+2𝛮+1 −1

3
= 𝛩(𝑁3)

37

Solving Recurrences: Example M1

Solving Recurrences: Example M2

38

Solving Recurrences: Example M2

• Suppose that we have an algorithm that at
each step:

– takes Θ (lg(N)) time to go over N items.

– eliminates one item and then calls itself with the
remaining data.

• How do we write this recurrence?

39

Solving Recurrences: Example M2

• Suppose that we have an algorithm that at each step:
– takes Θ (lg(N)) time to go over N items.
– eliminates one item and then calls itself with the

remaining data.

• How do we write this recurrence?
• 𝑇(𝑁) = 𝑇(𝑁 − 1) + lg (𝑁)

 = 𝑇(𝑁 − 2) + lg (𝑁 − 1) + lg (𝑁)

 = 𝑇(𝑁 − 3) + lg (𝑁 − 2) + lg (𝑁 − 1) + lg (𝑁)

 …

 = lg (1) + lg (2) + … + lg (𝑁)

 = 𝑙𝑔(𝑘)𝑁
𝑘=1 . How do we compute that?

40

Solving Recurrences: Example M2

• We process 𝒍𝒈(𝒌) 𝑵
𝒌=𝟏 using the fact that:

 lg (𝑎) + lg (𝑏) = lg (𝑎𝑏)

• lg(k) N
k=1 = lg 1 + lg 2 + … + lg N

 = lg (𝑁!)

 ≌ lg ((
𝑁

𝑒
)𝑁)

 = 𝑁 lg (
𝑁

𝑒
)

 = 𝑁 lg 𝑁 – 𝑁 lg 𝑒 = 𝛩(𝑁 lg 𝑁)

41

Solving Recurrences: Example M3

42

Solving Recurrences: Example M3

• Suppose that we have an algorithm that at
each step:

– takes Θ (1) time to go over N items.

– calls itself 3 times on data of size N-1.

– takes Θ (1) time to combine the results.

• How do we write this recurrence?

43

Solving Recurrences: Example M3
• Suppose that we have an algorithm that at each step:

– takes Θ (1) time to go over N items.

– calls itself 3 times on data of size N-1.

– takes Θ (1) time to combine the results.

• How do we write this recurrence?
• 𝑇(𝑁) = 3𝑇(𝑁 − 1) + 1 (why use ‘+1’ and not ‘+2’?)

 = 32𝑇(𝑁 − 2) + 3 + 1

 = 33𝑇(𝑁 − 3) + 32 + 3 + 1

 …

 = 3𝑁−1𝑇 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1

44

Note: T(1) is just a constant finite summation

Solving Recurrences: Example M3

• Suppose that we have an algorithm that at each step:
– takes Θ (1) time to go over N items.
– calls itself 3 times on data of size N-1.
– takes Θ (1) time to combine the results.

• How do we write this recurrence?
• 𝑇(𝑁) = 3𝑇(𝑁 − 1) + 1

 = 32𝑇 𝑁 − 2 + 3 + 1

 = 33𝑇 𝑁 − 3 + 32 + 3 + 1

 …

 = 3𝑁−1𝑇 1 + 3𝑁−2 + 3𝑁−3 + 3𝑁−4 +⋯+ 1

 = O 3𝑁 + O 3𝑁 = O(3𝑁)

45

Solving Recurrences: Example M4

𝑇 1 = 20

𝑇 𝑁 = 𝑇
𝑁

2
+ 𝑁6 Step

1

= 𝑇
𝑁

22
+

𝑁

2

6

+𝑁6 Step

2

= 𝑇
𝑁

23
+

𝑁

22

6

+
𝑁

2

6

+ 𝑁6 Step

3

 …

= 𝑇
𝑁

2𝑖
+

𝑁

2𝑖−1

6

+⋯+
𝑁

22

6

+
𝑁

2

6

+ 𝑁6 Step

i

…

= 𝑇(1) +
𝑁

2𝑛−1

6

+⋯+
𝑁

22

6

+
𝑁

2

6

+𝑁6 Step

n

 46

Solving Recurrences: Example M4
= 𝑇(1) +

𝑁

2𝑛−1

6
+⋯+

𝑁

22

6
+

𝑁

2

6
+ 𝑁6 (Step

n)

= 20 +
𝑁

2𝑛−1

6
+⋯+

𝑁

22

6
+

𝑁

2

6
+ 𝑁6 Pull out N6

= 20 + 𝑁6[
1

2𝑛−1

6
+⋯+

1

22

6
+

1

2

6
+ 1] reorder

= 20 + 𝑁6[1 +
1

2

6

+
1

22

6

+⋯ +
1

2𝑛−1

6

]

notice the increasing exponents. We will try to produce summation 1 + 𝑥1 + 𝑥2+ ... + 𝑥𝑛−1

We use:
1

22

6
 =

1

26

2
. The advantage now is that

1

26
 can be used as x in the summation above

= 20 + 𝑁6[1 +
1

26

1
+

1

26

2
+⋯+

1

26

𝑛−1
]

Since
1

26
 <1, ⇒ 1 + 𝑥1 + 𝑥2+ ... + 𝑥𝑛−1 ≤ 1/(1-x) ⇒

 ≤ 20 + 𝑁6 ∗ 1/[1−
1

26
] Here 20 and 1/[1−

1

26
] are constants and can be ignored.

= 𝛩 𝑁6 (Note that 𝑁6 ≤ 𝑇(𝑁) ≤ 𝑁6 ∗ ct)
47

Common Recurrences Review
1. Reduce the problem size by 1 in constant time

 Θ(N)

2. Reduce the problem size by 1 in linear time
 Θ(N2)

3. Halve problem in constant time
 Θ(lg(N))

4. Halve problem in linear time
 Θ(N) (~2N)

5. Break the problem into 2 halves in constant time
 Θ(N) (~2N)

6. Break the problem into 2 halves in linear time
 Θ(N lg(N))

48

