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Search Trees

• "search tree" as a term does NOT
refer to a specific implementation.

• The term refers to a family of 
implementations, that may have 
different properties.

• We will discuss:

– Binary search trees (BST).

– 2-3-4 trees (a special type of a B-
tree).

– Mention briefly: red-black trees, AVL 
trees, splay trees, B-trees and other 
variations.
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• Main operations in search trees: 
search, insert and delete

• Insertions and deletions can differ 
among trees, and have important 
implications on overall 
performance.

• The main goal is to have insertions 
and deletions that:

– Are efficient (at most logarithmic 
time).

– Leave the tree balanced, to 
support efficient search (at most 
logarithmic time).



2-3-4 Trees 
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Nodes:
- 2-node : 1 item,   2 children
- 3-node:  2 items, 3 children
- 4-node:  3 items, 4 children
(no missing children in any of these nodes)

All leaves must be at the same level. (It grows and shrinks from the root.)
A node that is not a leaf, will have ALL the children around an item. E.g. cannot 
simply remove node 72  (No ‘gaps’)
The tree grows in height from the root.
Web animation: Data Structures Visualization, Indexing->B-Trees, select Max degree = 4 and  “preemptive split/merge”

- Items in a node are in order of keys
- Given item with key k: 

* Keys in left   subtree:    < k  (≤ k, if duplicates)
* Keys in right subtree:    > k

≤ <

≤

< ≤
2-node

3-node

4-node2-node

leaf leafleaf

Difference between items and nodes. How many nodes? Items? Types of nodes?

<

https://www.cs.usfca.edu/~galles/visualization/BTree.html


2-3-4 Trees
• All leaves are at the 

same level. 

• Any internal node has at 
least 2 children (has all 
the children around its 
keys)

It is similar to a perfect tree. 
There are no ‘gaps’ in the tree.

– See picture on next page

• The tree is guaranteed to 
stay balanced regardless 
of the order of 
insertions.

• Has three types of 
nodes:
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• 2-nodes, which contain:

– An item with key K.

– A left subtree with keys <= K.

– A right subtree with keys > K.

• 3-nodes, which contain:

– Two items with keys K1 and K2, K1 <= K2.

– A left subtree with keys <= K1.

– A middle subtree with 
K1 < keys <= K2.

– A right subtree with keys > K2.

• 4-nodes, which contain:

– Three items with keys K1, K2, K3, K1 <= K2 <= K3.

– A left subtree with keys <= K1.

– A middle-left subtree with 
K1 < keys <= K2.

– A middle-right subtree with K2 < keys <= K3.

– A right subtree with keys > K3.



Types of Nodes

2-node
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≤

≤
≤ ≤

<

< <
Values v .s.t  60<v≤80

struct TreeNode234{

int keys[3];

struct TreeNode234* children[4];

int numChildren; //2, 3 or 4

//to know if a leaf or not, use children[0]==NULL or another field

};



Search in 2-3-4 Trees

• For simplicity, we assume that all keys are unique.

• Search in 2-3-4 trees is a generalization of search in binary 
search trees.
– select one of the subtrees by comparing the  search key with the 1, 2, or 

3 keys  that are present at the node.

• Search time is logarithmic to the number of items.
– The time is at most linear to the height of the tree.

– log4(N/3) ≤height ≤ log2N. Remember that log4(N/3) = Θ(log2N)
• This inequality is derived based on the extreme cases where all the nodes are of type 

2-node (so only one item in each node=> N nodes and a binary tree) and all the 
nodes are of type 4-node (so the tree will have N/3 nodes and every node has 4 
children => height = log4(num_of_tree_nodes) = log4(N/3))

• Next: 
– how to implement insertions and deletions so that the tree keeps its 

property:  all leaves are at the same level.
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Insertion in 2-3-4 Trees 

• We follow the same path as if we are searching for the item.

• We cannot just insert the item at the end of that path:
– Case 1: If the leaf is a 2-node or 3-node, there is room to insert the new item 

with its key - OK

– Case 2: If the leaf is a 4-node, there is NO room for the new item. In order to 
insert it here , we would have to create a new leaf that would be on a 
different level than all the other leaves – PROBLEM => ‘break this node’ =>

• Fix all 4-nodes on the way as you search down in the tree.

• The tree will grow from the root.
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Insertion in 2-3-4 Trees
• Given our key K: we follow the same path as in search.

• “Preemptive Split”: on the way we “fix all the 4 nodes we meet”: 
– Web animation: Data Structures Visualization, Indexing->B-Trees, select “preemptive 

split/merge”

– If the parent is a 2-node, transform the pair into a 3-node connected to two 2-
nodes.

– If the parent is a 3-node, we transform the pair into a 4-node connected to 
two 2-nodes.

– If there is no parent (the root itself is a 4-node), split it into three 2-nodes 
(root and children). - This is how the tree height grows.

• These transformations:
– Are local (they only affect the nodes in question).

– Do not affect the overall balance or height of the tree (except for splitting a 4-
node root).

• This way, when we get to the bottom of the tree, we know that the 
node we arrived at is not a 4-node, and thus it has room to insert 
the new item. 8

https://www.cs.usfca.edu/~galles/visualization/BTree.html


Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.
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Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.
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Insertion Examples
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Insert 25

• Inserting an item with key 25:
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Insert 25

• Inserting an item with key 25:
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Insert 25

• Inserting an item with key 25:
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Insert 25

• Inserting an item with key 25:
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Insert 25

• We found a 4-node, we must split it and send an item up to 
the parent (2-node) which will become a 3-node.
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Insert 25

• Continue search for 25 from the updated (22,28) node.

17

22 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 7229



Insert 25

• Reached a leaf with less than 3 items. Add the item.
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Insert 27

• Next: insert an item with key = 27.
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Insert 27
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Insert 27
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Insert 26

• Next: insert an item with key = 26.
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Insert 26
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Insert 26
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Insert 26

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes.
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Insert 26

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes.
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Insert 26

• Reached the bottom. Make insertion of item with key 26.
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Insert 26

• Reached the bottom. Make insertion of item with key 26.
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Insert 13

• Insert an item with key = 13.
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Insert 13     (uses preemptive split)

Our convention:  preemptive split : Split this node b.c. it is full and I 
found it on my search down! (Note that we split it even though there is 
room for 13 in the leaf)
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Insert 13     (uses preemptive split)

• Found a 3-node being parent to a 4-node, we must transform 
the pair into a 4-node connected to two 2-nodes. 
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Insert 13 
• The root became a 4-node, but we will NOT split it. (Split what 

was full, not what just became full.)

• If a node JUST became 4-node due to us pushing an item in it 
from splitting one of its children, we do NOT split this node. 

• (In some implementations this node is split at this point).
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Insert 13

• Continue the search.
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Insert 13

• Insert in leaf node.
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Insert 90

• Insert 90.

37

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

10 13 17



Insert 90  (part 1)  (preemptive split)

• Insert 90. The root is a 4-node. Preemptive split: split it.
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Insert 90 (part 2)
• The root is now split!  (preemptive split)

• THIS IS HOW THE TREE HEIGHT GROWS!
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Insert 90 (part 3)

• Continue to search for 90.
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Insert 90 (part 4)

• Continue to search for 90.
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Insert 90 (part 5)

• Leaf, has space, insert 90.
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Insert 90 (part 6)

• Leaf, has space, insert 90.
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REMEMBER
our convention: premptive split

• If on your path to insert, you see a 4 node, you split 
it!  

– I will refer to this convention/choice as “preemptive split”

• You do that even if there is room in the leaf and you 
can insert without splitting this node. 

44



Example: Build a Tree

• In an empty tree, insert items given in order:

30, 99, 70, 60, 40, 66, 50, 53, 45, 42

• On the Data Structures Visualization website, if you 
select Max degree = 4 and “preemptive split”, it will 
follow the same process.
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Building a Tree
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Node to 
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Tree

30

99

70

60
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40

30 70 99

70

9930 60

70

9930 40 60

Node to 
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50
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Preemptive 
split of node 
50\60\66. 
Root becomes 
full but does 
not split now.
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50 53 66

Continues on next page … 
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Node to 
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Tree

45
Preemptive 
split at root 
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even
though 
node 50|53 
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Deletion in 2-3-4 Trees

• More complicated.
– Sedwick book does not cover it.

• Idea: in order to delete item x (with key k) search for 
k. When find it:

– If in a leaf remove it, 

– Else replace it with the successor of x, y. (y is the item with 
the first key larger than k.) Note: y will be in a leaf. 
• remove y and put it in place of x. 

• When removing y we have problems as with insert, 
but now the nodes may not have enough keys (need 
2 or 3 keys) => fix nodes that have only one key on 
the path from root to y.
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Delete 52

• Delete item with key 52:

• How about deleting item with key 95:
49
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Deletion in 2-3-4 Trees

• Case 1: leaf has 2 or more items: remove y

• Case 2: node on the path has 2 or more items: fine

• Case 3: node on the path has only 1 item 

– A) Try to get a key from the sibling – must rotate with the 
parent key to preserve the order property

– B) If no sibling has 2 or more keys, get a key from the 
parent and merge with your sibling neighboring that key.

– C) The parent is the root and has only one key (and 
therefore exactly 2 children): merge the root and the 2 
siblings together.
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Self Balancing Binary Trees
• Red-Black trees 

• AVL trees

• Splay trees

• ….
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Red-Black

• Red-Black trees (https://en.wikipedia.org/wiki/Red%E2%80%93black_tree)

– Red & black nodes

• Every node is either red or black

• Root is black – CLRS requirement, but not in other works

• a red node will have both his children black, 

• all NIL nodes are black (NIL = unexisting child node)

• For every node, any path from it to a leaf will have the same number of 
black nodes (i.e. same ‘black height’) => actual path lengths differ by at 
most a factor of two (cannot have 2 consecutive red nodes) 

– 2-3-4 trees can be mapped to red-black trees: 2-node = 1 black node, 3-
node = 1 black & 1 red (left or right) 4 node = 1 black & 2 red children 
(see wikipedia)
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https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
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AVL 
• AVL trees (https://www.youtube.com/watch?v=FNeL18KsWPc&t=2586s)

– Height of the two children of any node differs by 1 at most. Go to 
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html and insert 
numbers in order: 41, 20, 65, 11, 29, 50, 26 (to build the tree from the 
MIT example) and then insert 23 and then 55.
• In CLRS and MIT video leaves have height 0. 

• In the visualization leaves have height 1 (all heights are off by 1) 

– Also start with empty tree and insert: 30, 50, 70, 90, 85, 60
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Splay trees

• Splay trees
– Self adjusting: the items used more recently (inserted or read/visited) 

move towards the top. 

– The tree is not balanced, but performs well because it brings the 
frequent items to the top.

– Splay insertion: the new item is inserted at the root by a rotation that 
replaces a node with his grandchild. 

• Search in the tree for the new node. It takes you to a leaf location. Insert 
new node there and continue with repeated rotations to bring it to the 
root. This process will reduce the length of that original path to half 
(because with each rotation, the grandchild node moves two levels up => 
the path on which these rotations are done, is cut in half).

– See visualization: https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

– For more on splay trees see Sedgewick, pages 540-546.
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Java

• TreeMap – Red-Black tree

• TreeSet – implementation based on TreeMap
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https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeSet.html
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