
2-3-4 Trees
(BST)

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

Includes materials from Vassilis Athitsos

University of Texas at Arlington

110/29/2024

Search Trees

• "search tree" as a term does NOT
refer to a specific implementation.

• The term refers to a family of
implementations, that may have
different properties.

• We will discuss:

– Binary search trees (BST).

– 2-3-4 trees (a special type of a B-
tree).

– Mention briefly: red-black trees, AVL
trees, splay trees, B-trees and other
variations.

2

• Main operations in search trees:
search, insert and delete

• Insertions and deletions can differ
among trees, and have important
implications on overall
performance.

• The main goal is to have insertions
and deletions that:

– Are efficient (at most logarithmic
time).

– Leave the tree balanced, to
support efficient search (at most
logarithmic time).

2-3-4 Trees

22

3

30 60

70 80 90

10 17 24 26 29 52 62 65 95

48

40 41 72 81 85

Nodes:
- 2-node : 1 item, 2 children
- 3-node: 2 items, 3 children
- 4-node: 3 items, 4 children
(no missing children in any of these nodes)

All leaves must be at the same level. (It grows and shrinks from the root.)
A node that is not a leaf, will have ALL the children around an item. E.g. cannot
simply remove node 72 (No ‘gaps’)
The tree grows in height from the root.
Web animation: Data Structures Visualization, Indexing->B-Trees, select Max degree = 4 and “preemptive split/merge”

- Items in a node are in order of keys
- Given item with key k:

* Keys in left subtree: < k (≤ k, if duplicates)
* Keys in right subtree: > k

≤ <

≤

< ≤
2-node

3-node

4-node2-node

leaf leafleaf

Difference between items and nodes. How many nodes? Items? Types of nodes?

<

https://www.cs.usfca.edu/~galles/visualization/BTree.html

2-3-4 Trees
• All leaves are at the

same level.

• Any internal node has at
least 2 children (has all
the children around its
keys)

It is similar to a perfect tree.
There are no ‘gaps’ in the tree.

– See picture on next page

• The tree is guaranteed to
stay balanced regardless
of the order of
insertions.

• Has three types of
nodes:

4

• 2-nodes, which contain:

– An item with key K.

– A left subtree with keys <= K.

– A right subtree with keys > K.

• 3-nodes, which contain:

– Two items with keys K1 and K2, K1 <= K2.

– A left subtree with keys <= K1.

– A middle subtree with
K1 < keys <= K2.

– A right subtree with keys > K2.

• 4-nodes, which contain:

– Three items with keys K1, K2, K3, K1 <= K2 <= K3.

– A left subtree with keys <= K1.

– A middle-left subtree with
K1 < keys <= K2.

– A middle-right subtree with K2 < keys <= K3.

– A right subtree with keys > K3.

Types of Nodes

2-node

5

22

10 17 24 26 29 22

30 60

70 80 9048

22

30 60 80

7048 90

4-node

3-node

≤

≤
≤ ≤

<

< <
Values v .s.t 60<v≤80

struct TreeNode234{

int keys[3];

struct TreeNode234* children[4];

int numChildren; //2, 3 or 4

//to know if a leaf or not, use children[0]==NULL or another field

};

Search in 2-3-4 Trees

• For simplicity, we assume that all keys are unique.

• Search in 2-3-4 trees is a generalization of search in binary
search trees.
– select one of the subtrees by comparing the search key with the 1, 2, or

3 keys that are present at the node.

• Search time is logarithmic to the number of items.
– The time is at most linear to the height of the tree.

– log4(N/3) ≤height ≤ log2N. Remember that log4(N/3) = Θ(log2N)
• This inequality is derived based on the extreme cases where all the nodes are of type

2-node (so only one item in each node=> N nodes and a binary tree) and all the
nodes are of type 4-node (so the tree will have N/3 nodes and every node has 4
children => height = log4(num_of_tree_nodes) = log4(N/3))

• Next:
– how to implement insertions and deletions so that the tree keeps its

property: all leaves are at the same level.
6

Insertion in 2-3-4 Trees

• We follow the same path as if we are searching for the item.

• We cannot just insert the item at the end of that path:
– Case 1: If the leaf is a 2-node or 3-node, there is room to insert the new item

with its key - OK

– Case 2: If the leaf is a 4-node, there is NO room for the new item. In order to
insert it here , we would have to create a new leaf that would be on a
different level than all the other leaves – PROBLEM => ‘break this node’ =>

• Fix all 4-nodes on the way as you search down in the tree.

• The tree will grow from the root.

7

Insertion in 2-3-4 Trees
• Given our key K: we follow the same path as in search.

• “Preemptive Split”: on the way we “fix all the 4 nodes we meet”:
– Web animation: Data Structures Visualization, Indexing->B-Trees, select “preemptive

split/merge”

– If the parent is a 2-node, transform the pair into a 3-node connected to two 2-
nodes.

– If the parent is a 3-node, we transform the pair into a 4-node connected to
two 2-nodes.

– If there is no parent (the root itself is a 4-node), split it into three 2-nodes
(root and children). - This is how the tree height grows.

• These transformations:
– Are local (they only affect the nodes in question).

– Do not affect the overall balance or height of the tree (except for splitting a 4-
node root).

• This way, when we get to the bottom of the tree, we know that the
node we arrived at is not a 4-node, and thus it has room to insert
the new item. 8

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

9

22

10 17 24 26 29

22

30 60

70 80 9048

Transformation Examples

• If we find a 2-node being parent to a 4-node, we transform the pair into a 3-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

• If we find a 3-node being parent to a 4-node, we transform the pair into a 4-
node connected to two 2-nodes, by pushing up the middle key of the 4-node.

10

22

10 17 24 26 29

22 26

10 17 2924

22

30 60

70 80 9048 22

30 60 80

7048 90

Insertion Examples

11

Insert 25

• Inserting an item with key 25:

12

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insert 25

• Inserting an item with key 25:

13

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insert 25

• Inserting an item with key 25:

14

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insert 25

• Inserting an item with key 25:

15

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insert 25

• We found a 4-node, we must split it and send an item up to
the parent (2-node) which will become a 3-node.

16

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Insert 25

• Continue search for 25 from the updated (22,28) node.

17

22 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 7229

Insert 25

• Reached a leaf with less than 3 items. Add the item.

18

22 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 7229

Insert 27

• Next: insert an item with key = 27.

19

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 7229

Insert 27

20

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 7229

Insert 27

21

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 7229

Insert 27

22

22 28

30 60

70 80

10 17 24 25 52 62 65 95

48

40 41 7229

Insert 27

23

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 7229

Insert 26

• Next: insert an item with key = 26.

24

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 7229

Insert 26

25

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 7229

Insert 26

26

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 7229

Insert 26

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

27

22 28

30 60

70 80

10 17 24 25 27 52 62 65 95

48

40 41 7229

Insert 26

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

28

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722927

Insert 26

• Reached the bottom. Make insertion of item with key 26.

29

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722927

Insert 26

• Reached the bottom. Make insertion of item with key 26.

30

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

Insert 13

• Insert an item with key = 13.

31

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

Insert 13 (uses preemptive split)

Our convention: preemptive split : Split this node b.c. it is full and I
found it on my search down! (Note that we split it even though there is
room for 13 in the leaf)

32

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

Insert 13 (uses preemptive split)

• Found a 3-node being parent to a 4-node, we must transform
the pair into a 4-node connected to two 2-nodes.

33

22 25 28

30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

Insert 13
• The root became a 4-node, but we will NOT split it. (Split what

was full, not what just became full.)

• If a node JUST became 4-node due to us pushing an item in it
from splitting one of its children, we do NOT split this node.

• (In some implementations this node is split at this point).

34

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

Insert 13

• Continue the search.

35

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

Insert 13

• Insert in leaf node.

36

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

10 13 17

Insert 90

• Insert 90.

37

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

10 13 17

Insert 90 (part 1) (preemptive split)

• Insert 90. The root is a 4-node. Preemptive split: split it.

38

22

25 30 60

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

10 13 17

Insert 90 (part 2)
• The root is now split! (preemptive split)

• THIS IS HOW THE TREE HEIGHT GROWS!

39

22

25

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

30

60

10 13 17

Insert 90 (part 3)

• Continue to search for 90.

40

22

25

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

30

60

10 13 17

Insert 90 (part 4)

• Continue to search for 90.

41

22

25

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

30

60

10 13 17

Insert 90 (part 5)

• Leaf, has space, insert 90.

42

22

25

70 80

10 17 24 52 62 65 95

48

40 41 722926 27

28

30

60

10 13 17

Insert 90 (part 6)

• Leaf, has space, insert 90.

43

22

25

70 80

10 17 24 52 62 65

48

40 41 722926 27

28

30

60

10 13 17 90 95

REMEMBER
our convention: premptive split

• If on your path to insert, you see a 4 node, you split
it!

– I will refer to this convention/choice as “preemptive split”

• You do that even if there is room in the leaf and you
can insert without splitting this node.

44

Example: Build a Tree

• In an empty tree, insert items given in order:

30, 99, 70, 60, 40, 66, 50, 53, 45, 42

• On the Data Structures Visualization website, if you
select Max degree = 4 and “preemptive split”, it will
follow the same process.

45

https://www.cs.usfca.edu/~galles/visualization/BTree.html

Building a Tree

46

30

30 99

Node to
insert

Tree

30

99

70

60
Preemptive
split of root

40

30 70 99

70

9930 60

70

9930 40 60

Node to
insert

Tree

66

50

53
Preemptive
split of node
50\60\66.
Root becomes
full but does
not split now.

40 70

30 9960 66

40 70

30 9950 60 66

30 99

40 60 70

50 53 66

Continues on next page …

4747

Node to
insert

Tree

45
Preemptive
split at root
(split root
even
though
node 50|53
had room)

42

40 50

60

7040

30 66 9945 50 53

60

70

30 66 9942 45 53

Building a Tree

Deletion in 2-3-4 Trees

• More complicated.
– Sedwick book does not cover it.

• Idea: in order to delete item x (with key k) search for
k. When find it:

– If in a leaf remove it,

– Else replace it with the successor of x, y. (y is the item with
the first key larger than k.) Note: y will be in a leaf.
• remove y and put it in place of x.

• When removing y we have problems as with insert,
but now the nodes may not have enough keys (need
2 or 3 keys) => fix nodes that have only one key on
the path from root to y.

48

Delete 52

• Delete item with key 52:

• How about deleting item with key 95:
49

22

30 60

70 80

10 17 24 28 29 52 62 65 95

48

40 41 72

Deletion in 2-3-4 Trees

• Case 1: leaf has 2 or more items: remove y

• Case 2: node on the path has 2 or more items: fine

• Case 3: node on the path has only 1 item

– A) Try to get a key from the sibling – must rotate with the
parent key to preserve the order property

– B) If no sibling has 2 or more keys, get a key from the
parent and merge with your sibling neighboring that key.

– C) The parent is the root and has only one key (and
therefore exactly 2 children): merge the root and the 2
siblings together.

50

Self Balancing Binary Trees
• Red-Black trees

• AVL trees

• Splay trees

• ….

51

Red-Black

• Red-Black trees (https://en.wikipedia.org/wiki/Red%E2%80%93black_tree)

– Red & black nodes

• Every node is either red or black

• Root is black – CLRS requirement, but not in other works

• a red node will have both his children black,

• all NIL nodes are black (NIL = unexisting child node)

• For every node, any path from it to a leaf will have the same number of
black nodes (i.e. same ‘black height’) => actual path lengths differ by at
most a factor of two (cannot have 2 consecutive red nodes)

– 2-3-4 trees can be mapped to red-black trees: 2-node = 1 black node, 3-
node = 1 black & 1 red (left or right) 4 node = 1 black & 2 red children
(see wikipedia)

52

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

AVL
• AVL trees (https://www.youtube.com/watch?v=FNeL18KsWPc&t=2586s)

– Height of the two children of any node differs by 1 at most. Go to
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html and insert
numbers in order: 41, 20, 65, 11, 29, 50, 26 (to build the tree from the
MIT example) and then insert 23 and then 55.
• In CLRS and MIT video leaves have height 0.

• In the visualization leaves have height 1 (all heights are off by 1)

– Also start with empty tree and insert: 30, 50, 70, 90, 85, 60

53

https://www.youtube.com/watch?v=FNeL18KsWPc&t=2586s
https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

Splay trees

• Splay trees
– Self adjusting: the items used more recently (inserted or read/visited)

move towards the top.

– The tree is not balanced, but performs well because it brings the
frequent items to the top.

– Splay insertion: the new item is inserted at the root by a rotation that
replaces a node with his grandchild.

• Search in the tree for the new node. It takes you to a leaf location. Insert
new node there and continue with repeated rotations to bring it to the
root. This process will reduce the length of that original path to half
(because with each rotation, the grandchild node moves two levels up =>
the path on which these rotations are done, is cut in half).

– See visualization: https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

– For more on splay trees see Sedgewick, pages 540-546.

54

https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

Java

• TreeMap – Red-Black tree

• TreeSet – implementation based on TreeMap

55

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/TreeSet.html

	2-3-4 Tree
	Slide 1
	Slide 2: Search Trees
	Slide 3: 2-3-4 Trees
	Slide 4: 2-3-4 Trees
	Slide 5: Types of Nodes
	Slide 6: Search in 2-3-4 Trees
	Slide 7: Insertion in 2-3-4 Trees
	Slide 8: Insertion in 2-3-4 Trees
	Slide 9: Transformation Examples
	Slide 10: Transformation Examples

	Insertion Examples
	Slide 11: Insertion Examples
	Slide 12: Insert 25
	Slide 13: Insert 25
	Slide 14: Insert 25
	Slide 15: Insert 25
	Slide 16: Insert 25
	Slide 17: Insert 25
	Slide 18: Insert 25
	Slide 19: Insert 27
	Slide 20: Insert 27
	Slide 21: Insert 27
	Slide 22: Insert 27
	Slide 23: Insert 27
	Slide 24: Insert 26
	Slide 25: Insert 26
	Slide 26: Insert 26
	Slide 27: Insert 26
	Slide 28: Insert 26
	Slide 29: Insert 26
	Slide 30: Insert 26
	Slide 31: Insert 13
	Slide 32: Insert 13 (uses preemptive split)
	Slide 33: Insert 13 (uses preemptive split)
	Slide 34: Insert 13
	Slide 35: Insert 13
	Slide 36: Insert 13
	Slide 37: Insert 90
	Slide 38: Insert 90 (part 1) (preemptive split)
	Slide 39: Insert 90 (part 2)
	Slide 40: Insert 90 (part 3)
	Slide 41: Insert 90 (part 4)
	Slide 42: Insert 90 (part 5)
	Slide 43: Insert 90 (part 6)
	Slide 44: REMEMBER our convention: premptive split

	Build a 2-3-4 (from an empty tree)
	Slide 45: Example: Build a Tree
	Slide 46: Building a Tree
	Slide 47: Building a Tree

	Deletion in a 2-3-4 tree
	Slide 48: Deletion in 2-3-4 Trees
	Slide 49: Delete 52
	Slide 50: Deletion in 2-3-4 Trees

	Other Search Trees
	Slide 51: Self Balancing Binary Trees
	Slide 52: Red-Black
	Slide 53: AVL
	Slide 54: Splay trees
	Slide 55: Java

