
Binary Search Trees
(BST)

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

Includes materials from Dr. Bob Weems

University of Texas at Arlington

110/24/2023

Search Trees

• "search tree" as a term does NOT
refer to a specific implementation.

• The term refers to a family of
implementations, that may have
different properties.

• We will discuss:

– Binary search trees (BST).

– 2-3-4 trees (a special type of a B-
tree).

– mention: red-black trees, AVL trees,
splay trees, B-trees and other
variations.

2

• All search trees support:
– search, insert and delete .

– min, max, successor, predecessor

• Insertions and deletions can differ
among trees, and have important
implications on overall performance.

• The main goal is to have insertions
and deletions that:

– Are efficient (at most logarithmic
time).

– Leave the tree balanced, to support
efficient search (at most logarithmic
time).

– Preserve the tree properties (restore the
tree)

Binary Search Tree (BST)

• Resources:

– BST in general – CLRS

– BST in general and solved problems:
http://cslibrary.stanford.edu/110/BinaryTrees.html#s

– leetcode

– Insertion at root (using insertion at a leaf and rotations)
• Sedgewick

• Dr. Bob Weems: Notes 11, parts: ‘11.D. Rotations’ and ’11.E. Insertion At Root’

– Randomizing the tree by inserting at a random position – not covered

• Sedgewick

3

http://cslibrary.stanford.edu/110/BinaryTrees.html#s

Tree Properties - Review

• Full tree

• Nearly Complete tree (e.g. heap tree)

• Complete binary tree

• Tree – connected graph with no cycles, or connected graph with N-1
edges (and N vertices).

4

Binary Search Trees
• Definition: a binary search tree is a binary tree where

the item at each node is:

– Greater than or equal to all items on the left subtree.

– Less than or equal to all items in the right subtree.

• How do we search?

– 30? 44?

5

40

23
52

15 37 44

 
typedef struct TreeNode * TreeNodePT;

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

Example 1

• What values could the empty leaf have?

6

40

23
43

15 37

Example 1

• If you change direction, all the nodes in the subtree
rooted X will be in the range [A,B].

7

A

23
B

15 X37

A ≤ X ≤ B
40 ≤ X ≤ 43

40

23
43

15 37

Range of possible values

• the path root to node 50 identifies
the interval of possible values in
the tree rooted at 50 to be: [40,70]

8

120
21

20
11

140
4

10
1

70
9

150
1

40
4

30
1

50
2

60
1

160
2

170
9

130
1

90
4

100
1

110
2

80
1

190
4

200
1

210
2

180
1

X ≤ 120

20≤ X ≤ 120

20≤X≤ 70

40≤X≤70

(tree image: Dr. Bob Weems: Notes 11, parts: ‘11.C. Binary Search Trees’)

Content of each node:

- the 1st number is the item/key and

- the 2nd number is the tree size (of
subtree rooted here)

- E.g. root has key 120 and size 21 -
the tree has 21 nodes

Valid search path in a BST?
• Assume the search for 50 gave

the sequence:

120, 20, 70, 40, 50 .

Can that be a valid search in a BST?

• Assume the search for 50 gave
the sequence:

120, 20, 70, 80, 50 .

Can that be a valid search in a BST?

9
Build the path and check that each node is correct with the tree reconstructed so far: 120 is root, …
If you can solve it on paper, how would you implement it?

• Assume the search for 50 gave
the sequence:

120, 20, 70, 10, 50 .

Can that be a valid search in a BST?

Properties

(tree image: Dr. Bob Weems: Notes 11, parts: ‘11.C. Binary Search Trees’)
10

• Where is the item with the smallest key?

• Where is the item with the largest key?

• What traversal prints the data in increasing order?
– How about decreasing order?

Consider the special
cases where the root has:
- No left child
- No right child

120
21

20
11

140
4

10
1

70
9

150
1

40
4

30
1

50
2

60
1

160
2

170
9

130
1

90
4

100
1

110
2

80
1

190
4

200
1

210
2

180
1

data
size

Predecessor and Successor
(according to key order)

(tree image: Dr. Bob Weems: Notes 11, parts: ‘11.C. Binary Search Trees’)
11

120
21

20
11

140
4

10
1

70
9

150
1

40
4

30
1

50
2

60
1

160
2

170
9

130
1

90
4

100
1

110
2

80
1

190
4

200
1

210
2

180
1

Node Predecessor Successor

120

70

170

160 *

60 * *

130 *

50 *

180 *

Content of each node:

- the 1st number is the item/key and

- the 2nd number is the tree size (of subtree rooted here)

- E.g. Root has key 120 and size 21 - the tree has 21 nodes

Predecessor and Successor

• When the node has the child you need.

• When the node does NOT have he child you need.

node keys in sorted order: 10, 20, 30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200,210

Predecessor and Successor (according to key order)

(tree image: Dr. Bob Weems: Notes 11, parts: ‘11.C. Binary Search Trees’)
12

120
21

20
11

140
4

10
1

70
9

150
1

40
4

30
1

50
2

60
1

160
2

170
9

130
1

90
4

100
1

110
2

80
1

190
4

200
1

210
2

180
1

Node Predecessor Successor

120 110 130

70 60 80

170 160 180

160 *170

60 * 50 *70

130 *120

50 *40

180 *170

• Successor of node x with key k (go right):

– Smallest node in the right subtree

– Special case: no right subtree: first parent to the right

• Predecessor of node x with key k (go left):

– Largest node in the left subtree

– Special case: no left subtree: first parent to the left

• Min: leftmost node (from the root keep going left)

– Special case: no left child => root

• Max: rightmost node (from the root keep going right.

– Special case: no right child => root

• Print in order:

– Increasing: Left, Root, Right (inorder traversal)

– Decreasing: Right, Root, Left

• Successor of node x with key k (go right):

– Smallest node in the right subtree

– Special case: no right subtree: first parent to the right

• Predecessor of node x with key k (go left):

– Largest node in the left subtree

– Special case: no left subtree: first parent to the left
13

Binary Search Trees - Search

TreeNodePT search(TreeNodePT tree, int s_data) {

if (tree == NULL) return NULL;

else if (s_data == tree->data)

return tree;

else if (s_data < tree->data)

return search(tree->left, s_data);

else return search(tree->right, s_data);

}

14

Runtime

(in terms of ,N, number of nodes in the tree or tree height)

– Best case:

– Worst case:

40

23
52

15 37 44

typedef struct TreeNode * TreeNodePT;

struct TreeNode {

int data;

TreeNodePT left;

TreeNodePT right;

};

Naïve Insertion

/* Assume new_tree(int N) allocates memory for a node struct,

copies N in data, sets left and right to NULL and returns the

address of this node. */

TreeNodePT insert(TreeNodePT h, int n_data)

if (h == NULL) return new_tree_node(n_data);

else if (n_data < h->data)

h->left = insert(h->left, n_data);

else if (n_data > h->data)

h->right = insert(h->right, n_data);

return h;

15

Note that we use:
h->left = insert(h->left, data)
to handle the base case, where we return a new node,
and the parent must make this new node a child.

How will we call this
method?
root = insert(root, data)

40

23
52

15 37 44

39

To insert an item, the simplest approach is to
travel down in the tree until finding a leaf position
where it is appropriate to insert the item.

TreeNodePT new_tree_node(int data_in) {

TreeNodePT ndp = malloc(sizeof(struct TreeNode));

ndp->data = data_in;

ndp->left = NULL;

ndp->right = NULL;

return ndp;

}

Performance of BST

• Are these trees valid BST?

• Give two sequences of nodes s.t. when inserted in an
empty tree will produce the two trees shown here
(each sequence produces a different tree).

16

40

23
52

15 37 44

40

23

52

15

37

44

Performance of BST

• Are these trees valid BST?
– Yes

• Give two sequences of nodes s.t. when inserted in an
empty tree will produce the two trees shown here
(each sequence produces a different tree).
– 40, 23, 37, 52, 44, 15

– 15, 23, 37, 40, 44, 52

17

40

23
52

15 37 44

40

23

52

15

37

44

Search, Insert and Delete take time
linear to the height of the tree (worst).

Ideal: build and keep a balanced tree

• insertions and deletions should leave
the tree balanced.

Performance of BST
• If items are inserted in:

– ascending order, the resulting tree is maximally imbalanced.

– random order, the resulting trees are reasonably balanced.

• Can we insert the items in random order?
– If we build the tree from a batch of items.

• Shuffle them first, or grab them from random positions.

– If they come online (we do not have them all as a batch).

• Insert in the tree at a random position – see Sedgewick textbook

• Handling duplicates to balance the tree
– alternate between inserting left and right. Use a flag.

– keep a list of nodes with equal keys

– randomly chose to insert left or right
18

• Min: leftmost node (from the root keep going left)

– O(___)

• Max: rightmost node (from the root keep going right).

– O(___)

• Print in order:

– Increasing: Left, Root, Right (inorder traversal)

– Decreasing: Right, Root, Left

– O(______) can we give Theta? Θ(_____)

• Successor of node x with key k (go right):

– O(___)

• Predecessor of node x with key k (go left):

– O(___)

• Search for a value (and not found)
– O(___)

• Build the tree via N repeated insertions:
– O(___) Best: Θ(_____) Worst: Θ(_____)

• How about space complexity? 19

Time complexity for a tree with N nodes

120
21

20
11

140
4

10
1

70
9

150
1

40
4

30
1

50
2

60
1

160
2

170
9

130
1

90
4

100
1

110
2

80
1

190
4

200
1

210
2

180
1

data
size

BST - Deletion
Delete a node, z, in a BST

1. If z is a leaf, delete it,

2. If z has only one child, replace z with the child

3. If z has 2 children, replace it with its order-wise successor, y, and
delete old y. (Note: y will be a leaf or have only one child.)

A. Method 1 (Simple: copy the data)

1. Copy the data from y to z

2. Delete node y.

3. Problem if other components of the program maintain pointers to nodes in the tree they
would not know that the tree was changed and their data cannot be trusted anymore.

B. Method 2 (move the nodes)

1. Replaces the node (not content) z with node y in the tree.

2. Delete node z (y is now linked in place of z)

3. Does not have the pointer referencing problem.

4. 2 implementations: Sedgewick and CLRS.

20

BST – Deletion – Method 1
(Copy the data)

Delete(d) - delete a node d in a BST - Method 1.

1. If d is a leaf, delete it

2. If d has only one child, delete it and readjust the links
(the child ‘moves’ in the place of d).

3. If d has 2 children:

a) Find the successor, s, of d.
1. Where is the successor of d?

b) Copy only the data from s to d

c) Call Delete(s) for node s. Note that s can only be:
1. Leaf (case 1 above)

2. A node with only one child (the right child) (This is case 2 above.)

21

BST – Deletion – Method 2
(Move nodes)

Delete a node d in a BST - Method 2.

1. If d is a leaf, delete it

2. If d has only one child, delete it and readjust the
links (the child ‘moves’ in the place of d).

3. If d has 2 children, find the successor, s, of d.

Is s the right child of d?

a) YES: Transplant s over d (s will have only the right child)

b) NO:

22
Draw image

BST - Rotations

• Left and right rotations
(image source: Dr. Bob Weems: Notes 11, parts: ‘11.D. Rotations’)

23

A

B

C

a b c d

Right rotation at B
(AKA rotating edge BA)

Left rotation at B
(AKA rotating edge BC)

B

C

c d

A

a

b

B

A

ba

C

c

d

// Sedgewick code:

// rotate to the right

TreeNodePT rotR(TreeNodePT B)

{ nodePT A = B->left;

B->left = A->right;

A->right = B;

return A; }

// rotate to the left

TreeNodePT rotL(TreeNodePT B)

{ nodePT C = B->right;

B->right = C->left;

C->left = B;

return C; }

BST – Insertion at Root
(small changes to Sedgewick code)

TreeNodePT rotR(TreeNodePT h)

{ nodePT x = h->left; h->left = x->right; x->right = h;

return x; }

nodePT rotL(nodePT h)

{ nodePT x = h->right; h->right = x->left; x->left = h;

return x; }

TreeNodePT insertT(TreeNodePT h, int data)

{ if (h == NULL) return new_tree_node(data, NULL, NULL, 1);

if (data < h->data)

{ h->left = insertT(h->left, data); h = rotR(h); }

else

{ h->right = insertT(h->right, data); h = rotL(h); }

return h;

}

void STinsert(int data)

{ head = insertT(head, data); } // Sedgewick code adaptation
24

	Default Section
	Slide 1
	Slide 2: Search Trees
	Slide 3: Binary Search Tree (BST)
	Slide 4: Tree Properties - Review
	Slide 5: Binary Search Trees
	Slide 6: Example 1
	Slide 7: Example 1
	Slide 8: Range of possible values
	Slide 9: Valid search path in a BST?
	Slide 10: Properties
	Slide 11: Predecessor and Successor (according to key order)
	Slide 12: Predecessor and Successor (according to key order)
	Slide 13
	Slide 14: Binary Search Trees - Search
	Slide 15: Naïve Insertion
	Slide 16: Performance of BST
	Slide 17: Performance of BST
	Slide 18: Performance of BST
	Slide 19
	Slide 20: BST - Deletion
	Slide 21: BST – Deletion – Method 1 (Copy the data)
	Slide 22: BST – Deletion – Method 2 (Move nodes)
	Slide 23: BST - Rotations
	Slide 24: BST – Insertion at Root (small changes to Sedgewick code)

