
Recursion 

CSE 2320 – Algorithms and Data Structures 

University of Texas at Arlington 

 

1 

Updated:  2/21/2018 



Background & Preclass Preparation 

• Background (review): 

– Recursive functions 
• Factorial – must know how to write a recursive solution. 

• Fibonacci 

– C - function call, recursive function execution, local 
variables 

 

• See next page for a list of problems to think of before 
class. 

2 



Preclass Preparation 
• Think about these problems and write your recursive solutions on 

paper and bring it to class for your own reference. If stuck, write 
down where and what confuses you. Ask clarification questions in 
class. 
– Print array 

– compute the sum ﻿﻿of all the elements in an array 

– find the index of the smallest element in an array 

– recursive implementations for selection sort and insertion sort. In particular, 
first think about how to replace their outer loop with recursion (and keep the 
inner one still as a loop). (Next you can think about replacing the inner loop 
with recursion and writing everything with just recursion, no loops.) 

• How would you solve (even without recursion) the N-queens pb? 
– Place N queens on an NxN chess board so that they do not attach each other. 

– See this wikipage for images:  https://en.wikipedia.org/wiki/Eight_queens_puzzle 

• Do not try to read and understand the solutions from there. 

 

 

 

 

3 

https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://en.wikipedia.org/wiki/Eight_queens_puzzle


Objectives 

• Understand 

– Recursive function execution (given the code). 

– How to approach a problem when looking for a recursive 
solution to it. 

– (C code issues that may come up (and cause bugs) when 
writing recursive functions.) – Self study 

 

– Difference between tail-recursion and non-tail recursion. 

 

– How to write the time complexity recurrence formula for 
recursive functions. 
• Solving the recurrences is in the next presentation. 

 

 

4 



Recursion 
• Recursion is a fundamental concept in computer science. 

– In all recursive concepts, there are one or more base cases.  

• Recursive [math] functions: functions that call themselves. 
– Example:  N! = N * (N-1)!                

• Base case:   N = 0 

 

• Recursive data types: data types that are defined using references to 
themselves. 
– Example: Nodes in the implementation of linked lists.   

• Base case:  NULL 

• Recursive algorithms: algorithms that solve a problem by solving one 
or more smaller instances of the same problem. 
– Example:  binary search, (also mergesort, functions for trees )  

• Base case:  one or no element in collection. 

• Draw fractals: 
– http://web.cs.ucdavis.edu/~amenta/s12/fractalPlant.pdf 

– http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsintro-VisualizingRecursion.html 

 

 

5 

















 0 and 0 if  ))1,(,1(

0 and 0 if                  )1,1(

0 if                           1

),(

nmnmAmA

 n mmA

mn

nmA

Used as benchmark for compiler optimization for recursion. 

http://web.cs.ucdavis.edu/~amenta/s12/fractalPlant.pdf
http://web.cs.ucdavis.edu/~amenta/s12/fractalPlant.pdf
http://web.cs.ucdavis.edu/~amenta/s12/fractalPlant.pdf
http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsintro-VisualizingRecursion.html
http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsintro-VisualizingRecursion.html
http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsintro-VisualizingRecursion.html
http://interactivepython.org/runestone/static/pythonds/Recursion/pythondsintro-VisualizingRecursion.html


Components of recursive functions 

6 

int fact(int N) 

{ 

    if (N <= 1) return 1; 

    return N*fact(N-1); 

}  

Smaller problem size 
that moves towards 
the base case size   
(in recursive call) 

recursive call(s) 

Base case(s) 

Communication of 
computation 

Local work 
(computation) 

Each component is needed! What happens if you remove it?  
 

Proof by induction can be used to show it finishes and computes the correct result.  
You can see correctness of factorial in extra materials at the end. 

What is the 
problem size? 
 
The variable that 
controls /influences 
how much work will 
be done. E.g.: 
- N for factorial, 
- Size of array to be 
sorted … 



Recursive Function Execution 

7 

Recursive: 
int fact(int N) 
{ 
    if (N <= 1) return 1; 
    return N*fact(N-1); 
}  

Show fact(3) execution (and call stack): 

N=3 
fact(3) 

N=3 
fact(3) 

N=2 
fact(2) 

N=3 
fact(3) 

N=2 
fact(2) 

N=1 
fact(1) 

N=3 
fact(3) 

N=2 
fact(2) 

N=3 
fact(3) 

N=3 
fact(3) 

N=2 
fact(2) 

N=1 
fact(1) 

1 

2 

6 

3 

2 

1 

Tree showing 
the recursive 
function calls 
for fact(3): 

3 

2 

1 

Tree showing 
the recursive 
function calls 
for fact(3) and 
the return 
values: 

1 

2 

6 



Function Call Tree for fact(N) 

8 

N 

2 

1 

… 

N-1 

Time complexity of fact(N) ? T(N) = … 
 
T(N) = 
 
 
 
 
 

int fact(int N) 

{ 

    if (N <= 1) return 1; 

    return N*fact(N-1); 

}  

Function call tree convention: write problem size, N, in 
the node.  (N is the function argument) 



Trees for fact(N) 

9 

… Time complexity of fact(N) ? T(N) = … 
 
T(N) = T(N-1) + c 
T(1) = c 
 
( It works just as well with T(1) = d, but  
we will use same constant cost, c, for both  
local cost in recursive case and cost of base case) 

int fact(int N) 

{ 

    if (N <= 1) return 1; 

    return N*fact(N-1); 

}  

Time complexity convention: write T(N) outside the node 
and local cost in the node. N 

2 

1 

… 

N-1 

Function call tree convention: write problem size, N, in 
the node. 

Function 
call tree: 

Time 
complexity  
tree: 



Trees for fact(N) 

10 

c 

c 

c 

… 

c 

Time complexity of fact(N) ? T(N) = … 
 
T(N) = T(N-1) + c 
T(1) = c 
 
 
 
 

int fact(int N) 

{ 

    if (N <= 1) return 1; 

    return N*fact(N-1); 

}  

Time complexity convention: write T(N) outside the node 
and local cost in the node. N 

2 

1 

… 

N-1 

Function call tree convention: write problem size, N, in 
the node. 

Function 
call tree: 

Time 
complexity  
tree: 

T(N) 

T(N-1) 

T(2) 

T(1) 



Addressing the inefficiency of 
recursive functions:  Tail-recursion 

11 

Tail-recursion  
• There is only one recursive call. 
• The recursive call is returned directly, not used in a  
      computation.  

• E.g. tail recursion:   return factorial(…); 
• E.g. not tail recursion:   return N*factorial(…); 

• Where/how will the work be done? 



Tail-Recursive Function Execution 
Worksheet 

12 

Tail-recursive    (pass and return the  answer): 
int fact_pr(int N, int res){ 

    if (N <= 1) return res; 

    res = res * N; 

    return fact_pr(N-1, res); 

}  

// Wrapper function (sets parameters). 

int fact_pr_wrapper(int N) { 

    return  fact_pr(N, 1); 

}  

A function is TAIL-recursive if: 
- It has just one recursive call 
- Has no work left to do after the 

recursive call. 
 
 
Show fact_pr(3,1)  execution and stack. 



Tail-Recursive Function Execution 
Answers 

13 

N=3 
res =1 

fact_pr(3,1) 

N=2 
res = 3 

fact_pr(2,3) 

6 

6 

6 

Tail-recursive    (pass and return the  answer): 
int fact_pr(int N, int res){ 

    if (N <= 1) return res; 

    res = res * N; 

    return fact_pr(N-1, res); 

}  

// Wrapper function (sets parameters). 

int fact_pr_wrapper(int N) { 

    return  fact_pr(N, 1); 

}  

N=3 
res =1 

fact_pr(3,1) 

N=2 
res = 3 

fact_pr(2,3) 

N=3 
res =1 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 3 

fact_pr(2,3) 

N=3 
res =1 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 3 

fact_pr(2,3) 

N=3 
res =1 

fact_pr(3,1) 

N=3 
res =1 

fact_pr(3,1) 

A function is TAIL-recursive if: 
- It has just one recursive call 
- The last instruction is just the recursive 

call. 
 

Note: it uses res to pass the current 
computation and the return to pass the 
final result. 



Compiler optimization:  
no frame stack for tail recursive 

14 

N=3 
res =1 

fact_pr(3,1) 

N=2 
res = 3 

fact_pr(2,3) 

6 

6 

6 

N=3 
res =3 

fact_pr(3,1) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) fact_pr(3,1) 

Tail-recursive    (pass and return the  answer): 
int fact_pr(int N,int res){ 

  if (N <= 1) return res; 

  res = res * N; 

  return fact_pr(N-1,res); 

}  

N=3 
res =1 

fact_pr(3,1) 
N=2 
res =3 

fact_pr(2,3) 

N=1 
res =6 

fact_pr(1,6) 

6 

Behavior when compiler has optimization for tail-recursive functions.  
Instead of building a stack, it replaces the caller stack frame with the callee stack frame. 

N=3 
res =3 



Compare the two implementations: 

15 

N=3 
res =1 

fact_pr(3,1) 

N=2 
res = 3 

fact_pr(2,3) 
6 

6 

6 

N=3 
res =3 

fact_pr(3,1) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) 

N=1 
res = 6 

fact_pr(1,6) 

N=2 
res = 6 

fact_pr(2,3) 

N=3 
res =3 

fact_pr(3,1) 
N=3 
res =3 

fact_pr(3,1) 

N=3 
fact(3) 

N=3 
fact(3) 

N=2 
fact(2) 

N=3 
fact(3) 

N=2 
fact(2) 

N=1 
fact(1) 

N=3 
fact(3) 

N=2 
fact(2) 

N=3 
fact(3) 

N=3 
fact(3) 

N=2 
fact(2) 

N=1 
fact(1) 

1 

2 

6 

Tail-recursive  (pass & ret the  answer): 
int fact_pr(int N,int res){ 

  if (N <= 1) return res; 

  res = res * N; 

  return fact_pr(N-1,res); 

}  

NOT tail-recursive : 
int fact(int N) { 

    if (N <= 1) return 1; 

    return N*fact(N-1); 

}  



16 

Recursive, not tail-recursive: return answer 
int fact_ret(int N) { 
    if (N <= 1) return 1; 
    return N*fact_ret (N-1); 
}  

Tail-recursive: answer in updated argument (pointer) 
void fact_update(int N, int* res) { 
    if (N <= 1) return; 
    (*res) = (*res) * N; 
    fact_update (N-1, res); 
}  
 // Wrapper  function (sets parameters). 
int fact_update_wrapper (int N) { 
    int res = 1; 
    fact_update(N, &res); 
   // note diff between N and  res when fct finishes 

    return res; 
}  

Tail-recursive:    pass and return  answer 
int fact_pr(int N, int res) { 
    if (N <= 1) return res; 
    res = res * N; 
    return fact_pr(N-1, res); 
}  
  // Wrapper  function (sets parameters). 
int fact_pr_wrapper(int N) { 
    int res = 1; 
    return  fact_pr(N, res); // res =?  
}  
// Note that it combines passing data 
with returning data. 

Communication of computation 

What is the local work/computation? Is it done before or after the recursive call? 
Difference (tail/non-tail recursive): Do the local computation before or after the recursive call. 



Worksheet 

• Show the stack frame for  fact_update(int N, int * res).  
– Pay attention to the fact that res is a pointer. 

17 



Parameters:  
Pass-by-Value or Pass-by-reference? 
• Pass by reference (& in C++ or pointer in C) when a 

value computed in a recursive call must be available 
(is needed) after that call finished. 

• Pass-by-value if  

– You only need to use the value in that recursive call. 

– If when a recursive call on a  smaller problem finishes and 
returns, you need to come back to the values for that call 
• See the use of column indexes in the Queens problem (when you 

backtrack you get to a smaller column, corresponding to that call) 

• See the recursive implementation for generating permutations 
without repetitions. See how the backtracking takes you to the 
array before the changes done in the recursive call. 

18 



Recursive Vs. Non-Recursive 
Implementations 

• Recursive functions can be easier to read. 
– They are simpler (less code, fewer loops, “smaller problem”), follow the 

math definition. 

– To process recursive data types, such as nodes, oftentimes it is easy to write 
recursive functions. 

• Oftentimes recursive functions run slower. Why? 
– Recursive functions generate many function calls. The CPU has to pay a 

price (perform a certain number of operations) for each function call. 

– Possible solution: use tail-recursion when possible (some compilers have 
optimizations  for it) 

• Any recursive function can also be written in a non-recursive way. 
– Non-recursive implementations can be uglier (and more buggy, harder to 

debug) but more efficient.  
• See Ackerman recursive and non-recursive. 

– Compromise: make first version recursive, second non-recursive. 
• Use the recursive one to test the correctness of the non-recursive one. 

19 



Problem Solving: Recursive Solution 
• Idea: Write the solution for the current problem using answers for 

smaller problems and some local computations. 

• Steps: 
– Understand the problem and be able to solve it on paper. 

– Visualize the process and break-down components: 
• Think about the data that you use/generate and  

• What you do with that data. 

– Identify smaller sub-problems  

• Either do some processing an be left with a smaller problem or: 

• Given the answer to a smaller problem and local computations, solve the original 
problem 

– Assume you have the answer to the smaller problems. (your own recursive call 
will give that answer) 

– How do you combine or use those results to solve your original (big) problem? 

• How will you communicate the calculations? 

– How will this cycle stop?  

• Identify the smallest/trivial problem that you already know the answer for. 20 



Implementations for N! 
Worksheet 

• Iterative:    fact_iter 
 

• Recursive – however you want:  fact 
– What would be a smaller problem s.t. if you know the answer for that, you have less 

work to do. 

– Problem decomposition: N! = 1*2*…*(N-1)*N 
• Must generate the values: 1,2,3,…,N 

• Must compute the cumulative result (product in this case) 

• Pass the cumulative result to or from recursive function calls 
 

• Tail-Recursive – pass and return the answer:                           
int fact_pr(int N, int res)  
 

• Tail-Recursive – no return. Updates pointer argument:                    
void fact_update(int N, int* res)   

• Can you give a recursive function for N! that makes 2 recursive calls?  
– E.g. break the problem in 2 halves. 

 

21 



More N! Implementations: 
 

– Write the recurrence formula for each of the functions below. 

– Draw the trees & make the tables 

– Derive time complexity 

 

– N!  - That uses an upper bound to stop.  

– N!  - That has two recursive calls (e.g. on ‘half’ the problem size) 

 

22 



Recursive Functions for Linked Lists 
Worksheet 

• Example: int count(link x)  
– count how many links there are between x and the end of the list (x 

should be included in the count). 

– Recursive solution?    

– Base case?  

– Recursive function? 

 
 

23 



Recursive Functions for Linked Lists 
Answers 

• Example: int count(link x)  
– count how many links there are between x and the end of the list (x 

should be included in the count). 

– Recursive solution?   count(x) = 1 + count(x->next) 

– Base case: x = NULL,  count(NULL) = 0.   

– Recursive function:  

int count(link x) 

{ if (x == NULL) return 0;  

   return 1 + count(x->next);  

}  
 

24 



Practice Recursive Implementations: 
– Write the recurrence formula for each of the functions below. 

– N! (That uses an upper bound to stop. That has two recursive calls (e.g. on 

‘half’ the problem size)) 

– Binary search 

– Find max in an array 

– Sum of elements in an array  

– Selection sort  
• Use recursion to do the work of the outer loop. (Extra: also for inner loop) 

• Remember the sorting process. What would be a smaller problem?  

– Place N queens on an NxN checkerboard. 
• See online visualization (recursive fct calls, stored data, visual aid board) 

– https://www.cs.usfca.edu/~galles/visualization/RecQueens.html 

– Generate permutations with repetitions  

– Generate permutations without repetitions  

– Merge sort ? 
25 

https://www.cs.usfca.edu/~galles/visualization/RecQueens.html
https://www.cs.usfca.edu/~galles/visualization/RecQueens.html


Recursive Array Sum 

• Give a recursive method to add all the elements of an array A 
of size N. 

 

• Guiding questions 
– What constitutes a smaller problem? 

– If you have the answer to the smaller problem, what do you have to do 
to get the answer to your current(original) problem? 

– What other problem is this similar to? 

 

• Code 
– Any recursive solution 

– Tail-recursive solution 

 

• Now that we solved it, what other problem is this similar to? 26 



Binary Search - Recursive 
/* Adapted from Sedgewick  

*/ 

int search(int A[], int left, int right, int v) 

  { int m = (left+right)/2; 

    if (left > right) return -1;   // not found 

    if (v == A[m]) return m; 

    if (left == right) return -1; 

    if (v < A[m])  

         return search(A, left, m-1, v);  // recursive call 

    else  

   return search(A, m+1, right, v);  // recursive call 

 

  }  

 

- How many recursive calls?  

- Any correspondence between the recursive and non-recursive 
implementations? 

27 



Self-Study 

28 



C Code Discussion 
• The data computed by a recursive function can be ‘passed 

back up’ to the caller function in 2 ways: 

– Actually returned  (left example) 

– By modifying a reference variable (through a pointer) (right example) 

• This is needed for tail-recursion  

29 

int fact(int N) { 
    if (N <= 0) return 1; 
    return N*fact(N-1); 
}  
 
int main() { 
    int N = 3; 
    int res = fact(N); 
    printf("N = %d , res = %d ", N, res); 
}  
 

void fact_update(int N, int* res) { 
    if (N <= 0) return; 
    (*res) = (*res) * N; 
    fact_update (N-1, res); 
}  
  // Wrapper function to set-up parameters. 
int fact_update_wrapper(int N) { 
    int res = 1; 
    fact_update (N, &res); 
   // note diff between N and  res when fct finishes 

    return res; 
}  



TRAPS: Pointers to Local Variables in C 
• Pointers to local variables. 

– OK to pass to the fct being called (e.g. fact_tail_helper) a 
reference/pointer to a local variable (e.g. &res). 

– BAD to return a pointer to a local variable. 

30 

void fact_tail_helper(int N, int* res) { 
    if (N == 0) return; 
    (*res) = (*res) * N; 
    fact_tail_helper (N-1, res); 
}  
 
int main() { 
    int N = 3; 
    int res = 1; 
    fact_tail_helper (N, &res);  // Ok. out->in 
    printf("N = %d , res = %d ", N, &res); 
}  

 
// BAD. Incorrect. 
// Wrong ‘direction’: in->out 
int* test() { 
    int local_res = 10; 
    return &local_res;  // bad 
}  
 
int main() { 
    int * res = test(); 
    printf("res = %d ", *res); 
}  



Variables:    Local vs Static  

• What will    fact_v3(3)   evaluate to? 

• What will    fact_v4(3)   evaluate to? 

• Is test_4 ok? (Yes, because res is static.) 

 

31 

int fact_v3(int N) { 
    int res = 1;   
    if (N == 0) return res; 
    res = res * N; 
    fact_v3(N-1);  
    return res; 
}  

int fact_v4(int N) { 
    static int res = 1;   
    if (N == 0) return res; 
    res = res * N; 
    fact_v4(N-1);  
    return res; 
}  

int*  test_4(int N) { 
    static int res = 1;   
    return &res; 
}  

// static variables have issues as well: 
 int N = 5; 
 printf("fact_v4(%d) = %d\n", N, fact_v4(N)); 
 N = 3; 
 printf("fact_v4(%d) = %d\n", N, fact_v4(N)); 

fact_v4(5) = 120 
fact_v4(3) = 720 



Extra materials 

 

32 



Fun fact:  
It is not known if this function always terminates.  
(for any input) 

int puzzle(int N) 

{ 

  if (N == 1) return 1; 

  if (N % 2 == 0) 

       return puzzle(N/2); 

  else return puzzle(3*N+1); 

}  
 

33 

How is puzzle(3)  
evaluated? 



Factorial 

34 

Recursive  Definition: 
 
int factorial(int N) 
{ 
    if (N <= 1) return 1; 
    return N*factorial(N-1); 
}  

My terminology: 
- When talking about the algorithm or paper definition: base case, recursive case 
- When talking about the implementation: base step, recursive step 
- I will probably end up mixing these terms. 

 

- The recursive call is the actual (self) function call. E.g. fact(N-1) above. 

Practice execution of recursive fct calls 
int fact (int N) { 
    if (N <= 1) return 1; 
    int res = N*fact (N-1);  
    //T 
    return res; 
}  
 
Practice:  
For recursive calls generated from the 
original call fact(6), what is res at time 
T when N is 3 and when N is 5? 

Same 
algorithm 
Version on 
the right, 
allows us to 
see res for 
different 
calls. 



Passing Pointers in function calls in C 
• Managing the memory yourself may be safer. 

35 

//Managing the memory yourself. 
// Make sure you do it right. 

int fact_tail_2(int N) { 
    int * res = (int*)malloc(sizeof(int)); 
    (*res) = 1; 
    fact_tail_helper (N, res); 
    int temp = (*res); 
    free res; 
    return temp; 
}  

//Referencing a local variable.  
// OK if done in the correct ‘direction’. 
// Easier. 
int fact_tail(int N) { 
    int res = 1; 
    fact_tail_helper (N, &res); 
    return res; 
}  

void fact_tail_helper(int N, int* res) { 
    if (N == 0) return; 
    (*res) = (*res) * N; 
    fact_tail_helper (N-1, res); 
}  



Euclid's Algorithm 

int gcd(int m, int n) 

{ 

  if (n == 0) return m; 

  return gcd(n, m % n); 

} 

 

• Recursive algorithm 

• One of the most ancient algorithms. 

• Computes the greatest common divisor of two numbers. 

• It is based on the property that if T divides X and Y, then T also 
divides X mod Y. 

• How is gcd(96, 36) evaluated? 

36 



Euclid's Algorithm 

int gcd(int m, int n) 

{ 

  if (n == 0) return m; 

  return gcd(n, m % n); 

} 

 

• How is gcd(96, 36) evaluated? 

• gcd(96, 36) = gcd(36, 24) = gcd(24, 12) = gcd(12, 0) = 12. 

37 



Analyzing a Recursive Program – 
Factorial computes correct result 

• Proof: by induction. 

• Step 1: (the base case) 
– For N = 1, fact(1) returns 1, which is correct. 

• Step 2: (using the inductive hypothesis)  
– Suppose that fact(N) returns the right result 

for N = K, where K is an integer >= 1. ( fact(K) 
= K! ) 

– Then, for N = K+1, fact(N) returns: 
 N * fact(N-1) = (K+1) * fact(K) = (K+1) * K! = 
(K+1)! = N! 

– Thus, for N = K+1, fact(N) also returns the 
correct result. 

• Thus, by induction, factorial(N) 
computes the correct result for all N. 

38 

Recursive  Definition: 
 
int fact(int N) 
{ 
    if (N <= 1) return 1; 
    return N*fact(N-1); 
}  

Where precisely 
was the inductive 
hypothesis used? 
 



Analyzing a Recursive Program 
factorial  computes correct result 

• Proof: by induction. 

• Step 1: (the base case) 
– For N = 1, fact (1) returns 1, which is correct. 

• Step 2: (using the inductive hypothesis)  
– Suppose that fact(N) returns the right result 

for N = K, where K is an integer >= 1.  (fact(K) = 
K! ) 

– Then, for N = K+1, fact(N) returns: 
 N * fact(N-1) = (K+1) * fact(K) = (K+1) * K! = 
(K+1)! = N! 

– Thus, for N = K+1, fact(N) also returns the 
correct result. 

• Thus, by induction, fact(N) computes the 
correct result for all N. 

39 

Recursive  Definition: 
 
int fact(int N) 
{ 
    if (N <= 1) return 1; 
    return N*fact(N-1); 
}  

Where precisely 
was the inductive 
hypothesis used? 
 
In substituting K! 
for fact(K). 
 
 



40 

Recursive, not tail-recursive (return answer): 
int fact_ret(int N) { 
    if (N <= 1) return 1; 
    return N*fact_ret (N-1); 
}  

Iterative : 
int fact_iter(int N) { 
   int i, r = 1; 
  for (i = 2; i <= N; i++)   r *= i; 
  return result; 
}  

Tail-recursive    (answer in updated argument): 
void fact_update(int N, int* res) { 
    if (N <= 1) return; 
    (*res) = (*res) * N; 
    fact_update (N-1, res); 
}  
 // Wrapper  function (sets parameters). 
int fact_update_wrapper (int N) { 
    int res = 1; 
    fact_update(N, &res); 
   // note diff between N and  res when fct finishes 

    return res; 
}  

Tail-recursive   ( pass and return  answer): 
int fact_pr(int N, int res) { 
    if (N <= 1) return res; 
    res = res * N; 
    return fact_pr(N-1, res); 
}  
  // Wrapper  function (sets parameters). 
int fact_pr_wrapper(int N) { 
    int res = 1; 
    return  fact_pr(N, res); // res =?  
}  
// Note that it combines passing data with 
returning data. 

Implementations for N! 

What is the local work/computation? Is it done before or after the recursive call? 
Difference (tail/non-tail recursive): Do the local computation before or after the recursive call. 



N-tuples 

• N positions, D types of items possible for each position, 
generate all N-tuples. 
– E.g.: lock combinations: 3 places, each place can have anyone of the 0-9 

digits 

 

41 



N-tuples 
• N positions, D types possible for each position, generate all N-tuples. 

– Lock combinations: 3 places, each place can have anyone of the 0-9 digits 

• Method 1:  
– Iterate with x = 0 to DN and convert x to an N-bit number in base D. 

• Method 2:      void perm(int* tuple_arr, int spots,…){   // if basecase:     print  tuple_arr 

– Recursive function that: will populate, update and print the tuple array. 

– Rough idea: For each position iterate over all digits: 
 for d = 0 -> D // assume D is not included: 0->(N-1) 

     // set that position to have digit d. 

– Step 1 in understanding the problem and developing the solution: Assume N is 
not a variable, but it is always 3 (e.g. like a lock). Write the code. 

• As a preliminary test for your code, think about how many total permutations there 
are and what is the complexity of your code. They should match. 

– Step 2: Can you implement the above solution for cases where N is a variable 
(N is part of the input)? 

– Step 3: Can you use recursion? 42 



Permutations 

• Generate all permutations of N different elements. 

• Write code. 

• Write time complexity formula for the above code. 

43 


