
Dynamic Programming

Matrix Traversal and Counting

Edit Distance,

Longest Common Subsequence,

Longest Increasing Subsequence

CSE 3318 – Algorithms and Data Structures

University of Texas at Arlington

Alexandra Stefan

(Includes images, formulas and examples from CLRS, Dr. Bob Weems, wikipedia)

14/8/2025

Dynamic Programming (DP) - CLRS

• Dynamic programming (DP) applies when a problem has both of these
properties:
1. Optimal substructure: “optimal solutions to a problem incorporate optimal

solutions to related subproblems, which we may solve independently”.

2. Overlapping subproblems: “a recursive algorithm revisits the same problem
repeatedly”.

• Dynamic programming is typically used to:
– Solve optimization problems that have the above properties.

– Solve counting problems –e.g. Stair Climbing or Matrix Traversal.

– Speed up existing recursive implementations of problems that have overlapping
subproblems (property 2) – e.g. Fibonacci.

• Compare dynamic programming with divide and conquer, if covered.

2

Iterative or Bottom-Up
Dynamic Programming

• Main type of solution for DP problems

• Define the problems size and solve problems from size 0 going
up to the size we need.

• “Iterative” – because it uses a loop

• “Bottom-up” because you solve problems from the bottom (the
smallest problem size) up to the original problem size.

3

Steps for iterative (bottom up) solution

1. Identify trivial problems
1. typically where the size is 0

2. Look at the last step/choice in an optimal solution:
1. Assuming an optimal solution, what is the last action in

completing it?

2. Are there more than one options for that last action?

3. If you consider each action, what is the smaller problem
that you would combine with that last action?

4. Generate all these answers

5. Compute the value (gain or cost) for each of these answers.

6. Keep the optimal one (max or min based on problem)

3. Make a 1D or 2D array and start filling in answers
from smallest to largest problems.

4

Other types of solutions:
1. Brute force solution
2. Recursive solution (most

likely exponential and
inefficient)

3. Memoized solution
 (“memorized”, not “memorized”)

2D Matrix Traversal
P1. Count all possible ways to traverse a 2D matrix.

– Start from top left corner and reach bottom right corner.

– You can only move: 1 step to the right or one step down at a time. (No diagonal moves).

– 62. Unique Paths

– Variation: Add obstacles (cannot travel through certain cells): 63. Unique Paths II

– Variation: Allow to move in the diagonal direction as well.

P2. Add fish of various gains. Take path that gives the most gain.
– Variation: Add obstacles.

– Variation: minimization pb: 64. Minimum Path Sum

– How about this? 174. Dungeon Game

5

https://leetcode.com/problems/unique-paths/
https://leetcode.com/problems/unique-paths-ii/
https://leetcode.com/problems/minimum-path-sum/
https://leetcode.com/problems/dungeon-game/

2D Matrix Traversal
P1. Count all possible ways to traverse a 2D matrix.

– Start from top left corner and reach bottom right corner.

– You can only move: 1 step to the right or one step down at a time. (No diagonal moves).

– 62. Unique Paths

– Variation: Add obstacles (cannot travel through certain cells): 63. Unique Paths II

– Variation: Allow to move in the diagonal direction as well.

P2. Add fish of various gains. Take path that gives the most gain.
– Variation: Add obstacles.

– Variation: minimization pb: 64. Minimum Path Sum

– How about this? 174. Dungeon Game

6

https://leetcode.com/problems/unique-paths/
https://leetcode.com/problems/unique-paths-ii/
https://leetcode.com/problems/minimum-path-sum/
https://leetcode.com/problems/dungeon-game/

2D Matrix Traversal

P1. Count all possible ways to traverse a 2D matrix.
– Start from top left corner and reach bottom right corner.

– You can only move: 1 step to the right or one step down at a time. (No
diagonal moves).

7

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

8

64. Minimum Path Sum

https://leetcode.com/problems/minimum-path-sum/

Longest Common Subsequence
(LCS)

9

Longest Common Subsequence (LCS)
• Application: compute similarity of DNA strands

• Given 2 sequences, find the longest common subsequence (LCS).

– a subsequence is a sequence that appears in the same order, but not necessarily
in consecutive positions.

• Example:

– A B C B D A B

– B D C A B A

• Examples of subsequences of the above sequences:

– BCBA (length 4)

– BDAB

– CBA (length 3)

– CAB

– BB (length 2) 10

Show the components of the solution.
Can you show a solution similar to that
of an Edit distance problem?

LCS
Smaller Problems

• Original problem:

A B C B D A B

B D C A B A

• Smaller problems:

• Smaller problems that can be base cases:

11

Base cases and smaller problems

Original problem

(LCS length)

A B C B D A B
B D C A B A
(4)

Smaller problems

(LCS length)

"ABCB"
"BD"
(1)

"AB"
"DC"
(0)

Smaller problems that
can be base cases
(LCS length)

""
""
(0)

""
"B"
(0)

""
"BDCABA"
(0)

"A"
""
(0)

"ACBDAB"
""
(0)

12

Dependence on
Subproblems

(recursive case)

c(i,j) – depends on

 c(i-1,j-1), c(i-1, j), c(i,j-1)

(grayed areas show solved subproblems)

13

B

B

X

Y

i

jj-1

i-1

B

D

X

Y

i

jj-1

i-1

B

D

X

Y

i

jj-1

i-1

c(i-1,j-1) + 1, if xi-1 = yj-1

This case makes the solution grow
(finds an element of the subsequence)

c(i-1,j)
xi-1 is ignored

c(i,j-1)
yj-1 is ignored

Here
indexes
start
from 1

Textbook version:

𝑐 𝑖, 𝑗 = ൞

0, 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1, 𝑥𝑖−1 = 𝑦𝑗−1, 𝑖, 𝑗 > 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑥𝑖−1 ≠ 𝑦𝑗−1, 𝑖, 𝑗 > 0

The function below clearly shows the dependence on the smaller problems
and that the optimal value of all possibilities is kept. I would use this one!

𝑐 𝑖, 𝑗 = ൞

0, 𝑖 = 0 𝑜𝑟 𝑗 = 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗 − 1 + 1 , 𝑥𝑖 = 𝑦𝑗 , 𝑖, 𝑗 > 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑐(𝑖 − 1, 𝑗 − 1) , 𝑥𝑖 ≠ 𝑦𝑗 , 𝑖, 𝑗 > 0

The function below is equivalent, but one should prove that before using it (or
verify that it was proved).

CLRS – table and formula

14

𝑐 𝑖, 𝑗 = ൞

0, 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1, 𝑥𝑖−1 = 𝑦𝑗−1, 𝑖, 𝑗 > 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑥𝑖−1 ≠ 𝑦𝑗−1, 𝑖, 𝑗 > 0

For a visualization go to Data Structure Visualization
Longest Common Subsequence
And enter the words BDCABA and ABCBDAB.

N=strlen(X), P = strlen(Y)
Time Complexity: O()
Space Complexity: O()

0 1 2 3 4 5 6

B D C A B A

0

1 A

2 B

3 C

4 B

5 D

6 A

7 B

Longest Common Subsequence – textbook version

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Longest Common Subsequence – textbook version

CLRS – table and formula

15

𝑐 𝑖, 𝑗 = ൞

0, 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1, 𝑥𝑖−1 = 𝑦𝑗−1, 𝑖, 𝑗 > 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑥𝑖−1 ≠ 𝑦𝑗−1, 𝑖, 𝑗 > 0

For a visualization go to Data Structure Visualization
Longest Common Subsequence
And enter the words BDCABA and ABCBDAB.

N=strlen(X), P = strlen(Y)
Time Complexity: O()
Space Complexity: O()

https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.cs.usfca.edu/~galles/visualization/DPLCS.html

Iterative solution

16

CLRS – pseudocode

𝑐 𝑖, 𝑗 = ൞

0, 𝑖 = 0 𝑜𝑟 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1, 𝑥𝑖−1 = 𝑦𝑗−1, 𝑖, 𝑗 > 0

max 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 , 𝑥𝑖−1 ≠ 𝑦𝑗−1, 𝑖, 𝑗 > 0

N=strlen(X), P = strlen(Y)
Time Complexity: O(NP)
Space Complexity: O(NP)

LCS_length(X,Y)

 N = length(X)

 P = length(Y)

 b = 2D array of N+1 rows, P+1 columns

 c = 2D array of N+1 rows, P+1 columns

 for i = 0 to N

 c[i,0] = 0

 for j = 0 to P

 c[0,j] = 0

 for i = 1 to N

 for j = 1 to P

 if xi-1 == yj-1

 c[i,j] = c[i-1,j-1]+1

 b[i,j] = \ // diagonal

 else if c[i-1,j]≥c[i,j-1]

 c[i,j] = c[i-1,j]

 b[i,j] = ^ // up arrow

 else

 c[i,j] = c[i,j-1]

 b[i,j] = < // left arrow

Recover the subsequence

CLRS pseudcode

// to start it: print_LCS(b,X, ___, ____)

print_LCS(b,X,i,j)

 if i==0 or j==0

 return

 if b[i,j]==\ // diagonal arrow

 print_LCS(b,X,i-1, j-1)

 print(xi-1)

 else if (b[i,j]==^) // up arrow

 print_LCS(b,X,i-1, j)

 else //left arrow

 print_LCS(b,X,i, j-1)

17

N=strlen(X), P = strlen(Y)
Time Complexity: O()
Space Complexity: O()

Longest Increasing Subsequence
(LIS)

18

19

Given an array of values, find the longest increasing subsequence.
Example: A = { 3,6,3,1,4,3,4}

Variations:
Repetitions allowed: increasing subsequence. E.g.: 3,3,4,4 (also ok 3,3,3,4)

Repetitions not allowed: strictly increasing subsequence. E.g.: 1,3,4

Simple solution: reduce it to a LCS problem.
(For a more efficient solution tailored for the LIS problem see Dr. Weems notes.)

Longest Increasing Subsequence

A = { 3,6,3,1,4,3,4}

Repetition allowed:

X = {1,3,3,3,4,4,6}

Repetition not allowed:

X = {1,3,4,6} (sorted and unique)

20

3 6 3 1 4 3 4 3 6 3 1 4 3 4

Time and space of LCS(X,A) (dominates that of sorting) for both methods:
TC: ____
SC: ____ (depends on if only length needed or also subsequence needed and on LCS implementation)

A = {3,6,3,1,4,3,4}

Repetition allowed: X = {1,3,3,3,4,4,6} (A sorted)

LCS({1,3,3,3,4,4,6}, {3,6,3,1,4,3,4})

length 4, subsequence: {3,3,3,4}

Repetition not allowed: X = {1,3,4,6} (A sorted and unique)

LCS({1,3,4,6}, {3,6,3,1,4,3,4})

length: 3, subsequence: {1,3,4}

21

3 6 3 1 4 3 4

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

3 0 1 1 1 1 1 2 2

3 0 1 1 2 2 2 2 2

3 0 1 1 2 2 2 3 3

4 0 1 1 2 2 3 3 4

4 0 1 1 2 2 3 3 4

6 0 1 2 2 2 3 3 4

3 6 3 1 4 3 4

0 0 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1

3 0 1 1 1 1 1 2 1

4 0 1 1 1 1 2 2 3

6 0 1 2 2 2 2 2 3

Time and space of LCS(X,A) (dominates that of sorting) for both methods:
TC: O(n2)
SC: O(n2)

LIS to LCS reduction
• A = {3,6,3,1,4,3,4} of size n

• Time and space of LCS(X,A) (dominates that of sorting) for both methods below

• LIS with repetitions:
– produce sorted copy of A: X = {1,3,3,3,4,4,6}

– LIS(A) = LCS(X,A)

– Time complexity: Θ(n2) (copy A and sort in nlgn + solve LCS in Θ(n2))

– Space complexity: Ω(n) , O(n2)
• O(n2) if saving 2D table for LCS or

• O(n) if saving only 2 rows for LCS. (This can be used if only the length is needed)

• LIS with NO repetitions:
– produce sorted copy of unique elements in A: X = {1,3,4,6}

– LIS(A) = LCS(X,A)

– Time complexity: O(n2) (copy A and sort in nlgn + solve LCS in O(n2))

– Space complexity: Ω(n) , O(n2)
• O(n2) if saving 2D table for LCS or

• O(n) if saving only 2 rows for LCS. (This can be used if only the length is needed) 22

Edit Distance/Levenshtein Distance
• Problem : given two strings, produce a number that reflects how different they are

• Applications:
– auto-grade fill-in the blank questions in Canvas

– Spell checker

• Intuition – alignment, pairs and pair cost

• Method:
– Create table, fill in top row, fill in leftmost column, fill in remaining cells top-down and left-right

– Time complexity

– Space complexity

– Dynamic Programming type of solution

• Solution to current size problem is computed from solutions to smaller size problems

• Smallest problems -> easy solution

• Solve all problems from smallest size to current size

– Space improvement

• Recover the alignment - covered if time permits
23

The Edit Distance
Application: Spell-checker

24

• Spell checker - computes the “edit distance” between the words. The smaller distance, the more similar
the words. Returns all dictionary words that are at the smallest distance from misspelled word.

• Other applications: autograding (match answer), search by title

• This is a specific case of a more general problem: time series alignment.
• A related problem is Subsequence Search (find if a smaller string is part of a long one; not exact match)

Edit distance
• Minimum cost of all possible alignments between two

words.

• Identical words have distance 0

• Examples:

– Dist(“cat”, “cat”) -> 0

– Dist(“cat”, “bat”) -> 1

– Dist(“cat”, “cats”) -> 1 (insertion in word2)

– Dist(“cat”, “at”) -> 1 (insertion in word 1)

– Dist(“cat”, “dogs”) -> 4

– Dist(“cat”, “set”) -> 2

Alignments

25

- - S E T S

R E S E T -

1 1 10 0 0

- S E T S

R E S E T

1 1 1 1 1

Cost/distance: 5 Cost/distance: 3

• No cross-overs: The letters must be in the order in which they appear in
the string.

Examples of different alignments for the same words

- S E T S

R E S E T

1 1 1

Incorrect alignment

- S - E T S

R E S E - T

1 1 11 0 1

Cost/distance: 5

Pair cost:
 Same letters: 0
 Different letters: 1
 Letter-to-dash: 1 (a dash indicates insertion in that word)

Alignment cost: sum of costs of all pairs in the alignment.
Edit distance: minimum alignment cost over all possible alignments.
(We will compute the cost/distance, without explicitly generating the alignments)

The Edit Distance

• Edit distance – the cost of the best alignment
– Minimum cost of all possible alignments between two words.

– (The smaller distance, the more similar the words)

26

- - S E T

R E S E T

- - S E T S

R E S E T -

11 1 0 0 0 1 10 0 0

- - P E T S

R E S E T -

1 1 11 0 0

S E T

R E S E T

1 1 0 0 0

Edit distance: minimum alignment cost over all possible alignments.
Alignment cost: sum of costs of all pairs in the alignment.
Pair cost:
Same letters: 0
Different letters: 1
Letter to dash: 1

Notations, Subproblems

• Notation:
– X = x0,x1,x2,…,xn

– Y = y0,y1,y2,…,yp

– Dist(i,j) = the smallest cost of all possible alignments between
substrings x0,x1,x2,…,xi and y0,y1,y2,…,yj .

– Dist(i,j) will be recorded in a matrix at cell [i,j].

• Subproblems of ("SETS", "RESET"):
– Problem size can change by changing either X or Y (from two places):

–

–

–

–

• What is Dist for all of the above problems?
27

Notations, Subproblems

• Subproblems of ("SETS", "RESET"):
– Problem size can change by changing either X or Y (from two places):

– ("S", "RES")

– ("", "R"), ("", "RE"), ("", "RES"), …, ("", "RESET")

– ("S", ""), ("SE", ""), ("SET", ""), ("SETS", "")

– ("" , "")

• What is Dist for all of the above problems?

• Notation:
– X = x0,x1,x2,…,xn

– Y = y0,y1,y2,…,yp

– Dist(i,j) = the smallest cost of all possible alignments between
substrings x0,x1,x2,…,xi and y0,y1,y2,…,yj .

– Dist(i,j) will be recorded in a matrix at cell [i][j].

28

Dependence on Subproblems
Dist(i,j) – depends on Dist(i-1,j-1), Dist (i-1, j), Dist(i,j-1)

• Below, grayed areas show the solved subproblems

• We have 3 options for the last pair in an alignment up to index i (in X) and j (in Y)

29

X

Y

i

jj-1

i-1

X

Y

i

jj-1

i-1

X

Y

i

jj-1

i-1

Dist(i-1,j-1) + 0, if xi-1 = yj-1 or
Dist(i-1,j-1) + 1, if xi-1 ≠ yj-1

Dist(i-1,j) + 1
(insert in Y)

Dist(i,j-1) + 1
(insert in X)

Edit Distance: Filling out the distance matrix

• Each cell will have the answer for a specific subproblem.

• Special cases:

– Dist(0,0) =

– Dist(0,j) =

– Dist(i,0) =

– Dist(i,j) =

• Complexity (where: |X| = n, |Y| = p): Time: Space:

30

"" R E S E T

""

S

E

T

S

(insertion)
+1

+1
(insertion)

+0 (same)
+1 (diff)

0

1

2

3

4

0 1 2 3 4 5 R E S E T -

 S E T S
1

R E S E T

 S E T S -
1

R E S E T

 S E T S

1

R E S E

 S E T

Represents an optimal
alignment between
“RESE” and “SET”

Edit Distance – Cost function

• Each cell will have the answer for a specific subproblem.

• Special cases:

– Dist(0,0) = 0

– Dist(0,j) = 1 + Dist(0,j-1)

– Dist(i,0) = 1 + Dist(i-1,0)

– Dist(i,j) = min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1) } if xi-1 = yj-1 or

 min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1)+1 } if xi-1 ≠ yj -1

• Complexity (where: |X| = n, |Y| = p): Time: O(n*p) Space: O(n*p)

31

"" R E S E T

"" 0 1 2 3 4 5

S 1 1 2 2 3 4

E 2 2 1 2 2 3

T 3 3 2 2 3 2

S 4 4 3 2 3 3

0

1

2

3

4

0 1 2 3 4 5

(insertion)
+1

+1
(insertion)

+0 (same)
+1 (diff)

R E S E T -

 S E T S
1

R E S E T

 S E T S -
1

R E S E T

 S E T S

1

NOTE: Use this definition where for Dist(i,j) the
min of the 3 possible smaller problems is used
regardless of how letters xi-1 and yj-1 compare.

"" R E S E T

""

S

E

T

S
 (final answer)

Worked out example

Subproblem:
Dist(“SE”,“RESE”)

• Each cell will have the answer for a specific subproblem.
• Special cases:

– Dist(0,0) = 0
– Dist(0,j) = 1 + Dist(0,j-1) = j
– Dist(i,0) = 1 + Dist(i-1,0)
– Dist(i,j) = min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1) +0 } if xi-1 = yj-1 or
 min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1)+1 } if xi-1 ≠ yj-1

• Complexity (where: |X| = n, |Y| = p): Time: O(n*p) Space: O(n*p)

Subproblem:
Dist(“SE”,””)

Subproblem:
Dist(“”,”RESE”)

"" R E S E T

"" 0 0+1=1 1 1+1=2 2 2+1 3 3+1 4 4+1 5

S
0+1 =1

1
0+1=1 1+1=2

1+1 =2 1
1+1=2 2+1=3

1+1=2 2
2+0 3+1

2+1 2
3+1 4+1

2+1 3
4+1 5+1

3+1 4

E
1+1=2

2
1+1 1+1

2+1 2
1+0 2+1

2+1 1
2+1 2+1

1+1 2
2+0(E,E) 3+1

2+1 2
3+1 4+1

2+1 3

T
2+1

3
2+1 2+1

3+1 3
2+1 1+1

3+1 2
1+1 2+1

2+1 2
2+1(T,E) 2+1

2+1 3
2+0 (T,T) 3+1

3+1 2

S
3+1

4
3+1 3+1

4+1 4
3+1 2+1

4+1 3
2+0 2+1

3+1 2
2+1 3+1

2+1 3
3+1 2+1

3+1 3(final ans)

Worked out example

+0 because the
corresponding
letter is the
same (here T)

Subproblem:
Dist(“SE”,“RESE”)

• Each cell will have the answer for a specific subproblem.

• Special cases:
• Dist(0,0) = 0
• Dist(0,j) = 1 + Dist(0,j-1) = j
• Dist(i,0) = 1 + Dist(i-1,0)
• Dist(i,j) = min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1) +0 } if xi-1 = yj-1 or
 min { Dist(i-1,j)+1, Dist(i,j-1)+1, Dist(i-1,j-1)+1 } if xi-1 ≠ yj-1

• Complexity (where: |X| = n, |Y| = p): Time: O(n*p) Space: O(n*p)

Subproblem:
Dist(“SE”,””)

Subproblem:
Dist(“”,”RESE”)

ED - Improving memory usage: Θ(min{p,n})

• Optimize the memory usage: store only smaller problems that are needed.
– Store either 2 rows or 2 columns

– the choices cannot be recovered anymore (i.e. cannot recover what items to pick to achieve the
computed optimal value).

• Space complexity: Θ(min{ p, n })

• Practice:
– Can you implement this solution?

34

Θ(p)

Θ(n)

Motivation for Edit Distance

• The Edit Distance is a Time Series Alignment

• Other examples of problems solved with Time Series Alignment:
– Given observed temperatures, find location:

• Collected in a database temperatures at different hours over one day in various
places (labelled with the name). Given a query consisting of temperatures
collected in an unknown place, find the place with the most similar
temperatures. Issues:

– Not same number of measurements for every place and query.

– Measure similarity of signs in videos of sign language => find videos of
similar signs

– Find shapes in images (after image processing extracted relevant features)

• Find a substring in a string
– E.g. swear words in Pokemon Names

– Uses two additional sink states (at the beginning and end of the small query)

35

Sample Exam Problem

On the right is part of an edit distance table. CART is the
complete second string. AL is the end of the first string (the
first letters of this string are not shown).

a. (6 points) Fill-out the empty rows (finish the table).

b. (4 points) How many letters are missing from the first
string (before AL)? Justify your answer.

c. (8 points) Using the table and the information from part
b), for each of the letters C and A in the second string,
CART, say if it could be one of the missing letters of the
first string: Yes (it is one of the missing letters – ‘proof’),
No (it is not among the missing ones – ‘proof’), Maybe (it
may or may not be among the missing ones – give
example of both cases).

– C: Yes/No/Maybe. Justify:

– A: Yes/No/Maybe. Justify:
36

C A R T

… … … … … …

… 5 5 4 3 3

A

L

Recover the alignment for Edit
Distance

37

Not covered

Edit Distance
Recover the alignment – Worksheet

(using the arrow information)
Aligned
Pair

Update

xi-1
yj-1

i = i-1
j = j-1

xi-1
-

i = i-1

-
yj-1

j = j-1

38

"" R E S E T

"" 0 1 2 3 4 5

S 1 1 2 2 3 4

E 2 2 1 2 2 3

T 3 3 2 2 3 2

S 4 4 3 2 3 3

i

j

X

Y

0

1

2

3

0 1 2 3 4 5

Start at:
i = …….
j = …….

How big will
the solution
be (as num
of pairs)?

X = SETS
Y = RESET

4

Time complexity: O(……..)
(where: |X| = n, |Y| = p)

i

j

Edit Distance
Recover the alignment

Aligned
Pair

Update

xi-1
yj-1

i = i-1
j = j-1

xi-1
-

i = i-1

-
yj-1

j = j-1

39

"" R E S E T

"" 0 1 2 3 4 5

S 1 1 2 2 3 4

E 2 2 1 2 2 3

T 3 3 2 2 3 2

S 4 4 3 2 3 3

i 4 3 2 1 0 0 0

j 5 5 4 3 2 1 0

X S T E S - -

Y - T E S E R

1 0 0 0 1 1

0

1

2

3

0 1 2 3 4 5

Start at:
i = 4
j = 5

How big will
the solution
be (as num
of pairs)?
n+p

X = SETS
Y = RESET

4

Time complexity: O(n+p)
(where: |X| = n, |Y| = p)

i

j

Print from right to left.

Here the pairs are filled in from the LEFT end to the RIGHT end
and printed from RIGHT to LEFT.

Sum of costs of pairs in the alignment string
is the same as table[4][5]: 1+0+0+0+1+1 = 3

• What is the best alignment between

abcdefghijk

cdXYZefgh

40

w w a b u d e f

 0 1 2 3 4 5 6 7 8

a 1 1 2 2 3 4 5 6 7

b 2 2 2 3 2 3 4 5 6

c 3 3 3 3 3 3 4 5 6

d 4 4 4 4 4 4 3 4 5

e 5 5 5 5 5 5 4 3 4

 f 6 6 6 6 6 6 5 4 3

y 7 7 7 7 7 7 6 5 4

y 8 8 8 8 8 8 7 6 5

y 9 9 9 9 9 9 8 7 6 41

first: abcdefyyy
second: wwabudef

edit distance:
Alignment:

Even if the choice was not recorded, we can backtrace based on the distances: see from
what direction (cell) you could have gotten here.

Edit Distance

Recover the alignment - Method 2:
(based only on distances)

Edit Distance

Recover the alignment - Method 2:
(based only on distances)

w w a b u d e f

 0 1 2 3 4 5 6 7 8

a 1 1 2 2 3 4 5 6 7

b 2 2 2 3 2 3 4 5 6

c 3 3 3 3 3 3 4 5 6

d 4 4 4 4 4 4 3 4 5

e 5 5 5 5 5 5 4 3 4

 f 6 6 6 6 6 6 5 4 3

y 7 7 7 7 7 7 6 5 4

y 8 8 8 8 8 8 7 6 5

y 9 9 9 9 9 9 8 7 6 42

first: abcdefyyy
second: wwabudef

edit distance: 6
Alignment:
- - a b c d e f y y y
w w a b u d e f - - -
 1 1 0 0 1 0 0 0 1 1 1

Even if the choice was not recorded, we can backtrace based on the distances: see from
what direction (cell) you could have gotten here.

	Dynamic Programming
	Slide 1
	Slide 2: Dynamic Programming (DP) - CLRS
	Slide 3: Iterative or Bottom-Up Dynamic Programming
	Slide 4: Steps for iterative (bottom up) solution

	Fun Problem-traverse,fish
	Slide 5: 2D Matrix Traversal
	Slide 6: 2D Matrix Traversal
	Slide 7: 2D Matrix Traversal
	Slide 8

	Longest Common Subsequence (& LIS))
	Slide 9: Longest Common Subsequence (LCS)
	Slide 10: Longest Common Subsequence (LCS)
	Slide 11: LCS Smaller Problems
	Slide 12: Base cases and smaller problems
	Slide 13: Dependence on Subproblems (recursive case)
	Slide 14
	Slide 15: Longest Common Subsequence – textbook version
	Slide 16: Iterative solution
	Slide 17: Recover the subsequence

	Longest Increasing Subsequence
	Slide 18: Longest Increasing Subsequence (LIS)
	Slide 19
	Slide 20: A = { 3,6,3,1,4,3,4}
	Slide 21: A = {3,6,3,1,4,3,4}
	Slide 22: LIS to LCS reduction

	Edit Distance
	Slide 23: Edit Distance/Levenshtein Distance
	Slide 24: The Edit Distance
	Slide 25: Alignments
	Slide 26: The Edit Distance
	Slide 27: Notations, Subproblems
	Slide 28: Notations, Subproblems
	Slide 29: Dependence on Subproblems
	Slide 30: Edit Distance: Filling out the distance matrix
	Slide 31: Edit Distance – Cost function
	Slide 32
	Slide 33
	Slide 34: ED - Improving memory usage: Θ(min{p,n})
	Slide 35: Motivation for Edit Distance
	Slide 36: Sample Exam Problem

	Removed-recover alignment for Edit Distance
	Slide 37: Recover the alignment for Edit Distance
	Slide 38: Edit Distance Recover the alignment – Worksheet (using the arrow information)
	Slide 39: Edit Distance Recover the alignment
	Slide 40
	Slide 41
	Slide 42: Edit Distance Recover the alignment - Method 2: (based only on distances)

