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Approaches for solving DP Problems

Greedy
- typically not  optimal 
solution (for DP-type 
problems)

- Build solution 
- Use a criterion for picking
- Commit to a choice and 
do not look back

Brute Force
- Optimal solution
- Produce all possible combinations, 
[check if valid], and keep the best. 
- Time: exponential
- Space: depends on 
implementation
- It may be hard to generate all 
possible combinations

DP
- Optimal solution
- Write math function, sol, that
captures the dependency of solution 
to current pb on solutions to smaller 
problems 
- Can be implemented in any of the 
following: iterative, memoized, 
recursive

Iterative (bottom-up) - BEST
- Optimal solution
- sol is an array (1D or 2D). Size:  N+1
- Fill in sol from 0 to N
- Time: polynomial (or pseudo-
polynomial for some problems)
- Space: polynomial (or pseudo-
polynomial 
- To recover the choices that gave the 
optimal answer, must backtrace => 
must keep picked array (1D or 2D).

Improve space usage
- Improves the iterative solution
- Saves space
- If used, cannot recover the choices 
(gives the optimal value, but not the 
choices)

Memoized
- Optimal solution
- Combines recursion and 
usage of sol array.
- sol is an array (1D or 2D)
- Fill in sol from 0 to n
- Time: same as iterative 
version (typically)
- Space: same as iterative 
version (typically) + space for 
frame stack. (Frame stack 
depth is typically smaller 
than the size of the sol array)

Recursive
- Optimal solution
- Time: exponential 
(typically)  =>
- DO NOT USE
- Space: depends on 
implementation (code). E.g. 
store all combinations, or 
generate, evaluate on the fly 
and keep best seen so far.
- Easy to code given math 
function

DP can solve:
- some type of counting problems (e.g. stair climbing) 
- some type of optimization problems (e.g. Knapsack)
- some type of recursively defined pbs (e.g. Fibonacci) 

Some DP solutions have pseudo polynomial time



Dynamic Programming (DP) - CLRS
• Dynamic programming (DP) applies when a problem has 

both of these properties:

1. Optimal substructure: “optimal solutions to a problem 
incorporate optimal solutions to related subproblems, which we 
may solve independently”.

2. Overlapping subproblems: “a recursive algorithm revisits the 
same problem repeatedly”.

• Dynamic programming is typically used to:

– Solve optimization problems that have the above properties.

– Solve counting problems –e.g. Stair Climbing or Matrix Traversal.

– Speed up existing recursive implementations of problems that 
have overlapping subproblems (property 2) – e.g. Fibonacci.

• Compare dynamic programming with divide and conquer.
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Iterative or Bottom-Up
Dynamic Programming

• Main type of solution for DP problems

• We can define the problems size and solve problems from size 
0 going up to the size we need.

• Iterative – because it uses a loop

• Bottom-up because you solve problems from the bottom (the 
smallest problem size) up to the original problem size. 
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Bottom-Up vs. Top Down

• There are two versions of dynamic programming.
– Bottom-up.

– Top-down (or memoization).

• Bottom-up: 
– Iterative, solves problems in sequence, from smaller to bigger.

• Top-down: 
– Recursive, start from the larger problem, solve smaller problems as 

needed.

– For any problem that we solve, store the solution, so we never have to 
compute the same solution twice.

– This approach is also called memoization.

5



Top-Down Dynamic Programming
( Memoization )

• Maintain an array/table where solutions to problems 
can be saved.

• To solve a problem P:

– See if the solution has already been stored in the array.

– If yes, return the solution.

– Else:
• Issue recursive calls to solve whatever smaller problems we need 

to solve.

• Using those solutions obtain the solution to problem P.

• Store the solution in the solutions array.

• Return the solution.
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Steps for iterative (bottom up) (Dr. Weems)

1. Identify problem input

2. Identify the cost/gain function (name it, describe it)

3. Give the math formula for the cost function for all 
cases: base cases and general case

4. Order the problems & solve them

5. Recover the choices that gave the optimal value

Other types of solutions

1. Brute force solution 

2. Recursive solution (most likely exponential and 
inneficient)

3. Memoized solution
7



Weighted Interval Scheduling

(Job Scheduling)
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Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem: 
Given n jobs where each job has a start time, finish time 
and value, (si,fi,vi) select a subset of them that do not 
overlap and give the largest total value.
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E.g.:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)



Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem: 
Given n jobs where each job has a start time, finish time 
and value, (si,fi,vi) select a subset of them that do not 
overlap and give the largest total value.

Preprocessing: 
• Sort jobs in increasing order of their finish time. 

• For each job ,i, compute the last job prior to i, p(i), that 
does not overlap with i.

– p(4) is 1 (last job that does not overlap with job 4)

– p(5) is 3
• Max (sol(4), 2+sol(3))
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E.g.:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

After preprocessing:
JobId (start, end, value, p(i))
1  (1,   4,  $5,       ) 
2  (2,   5,  $6,       )
3  (5,   6,  $3,       )
4  (4,   7,  $2,       )
5  (6,   8,  $2,       )
6  (3, 11,  $5,       )



Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem:
– Given n jobs where each job has a start time, finish time and value, (si,fi,vi) 

select a subset of them that do not overlap and give the largest total value.

Preprocessing: 
• Sort jobs in increasing order of their finish time. –already done here

• For each job ,i, compute the last job prior to i, p(i), that does not overlap with i.
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Solve the problem:
Steps: one step for each job.
Option: pick it or not
Smaller problems: 2: 

pb1 = jobs 1 to i-1,                =>    sol(i-1)     
pb2 = jobs 1 to p(i)   (where p(i) is the last job before i that does not overlap with i.   => sol(p(i))    

Solution function (gives the money value: sol(i) = the most money I can make using jobs 1,2,..,i): 
sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

Time complexity: O(n) )  (if data is already preprocessed) Fill out sol(i) in constant time for each i)
O(nlgn) (if jobs need to be sorted first and an nlgn sorting algorithm was used, and binary search for finding p(i) )
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i vi pi sol(i)  ($, money) sol(i) used i In optimal solution

0 0 -1 0

1 5 0 5 = Max{0, 5+0} Yes

2 6 0 6 = Max{5,6+0} Yes yes

3 3 2 9 =Max{6, 3+6} Yes yes

4 2 1 9 = Max{9, 2+5} No

5 2 3 11 = max{9, 2+9} Yes yes

6 5 0 11 = max{11, 5+0} No

Optimal value: _11___, jobs picked to get this value: 2,3,5
_________

Solve the problem:
Steps: one step for each job.
Option: pick it or not    (pick job i or not pick it)
Smaller problems: 2: 

pb1 = jobs 1 to i-1,     =>    sol(i-1)     
pb2 = jobs 1 to p(i)   (where p(i) is the last job before i

that does not overlap with i.   => sol(p(i))    
Solution function: 

sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

Time complexity: ______

Original problem:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

After preprocessing 
(sorted by END time):
JobId (start, end, value, p(i))
1  (1,   4,  $5,  __ ) 
2  (2,   5,  $6,  __ )
3  (5,   6,  $3,  __ )
4  (4,   7,  $2,  __ )
5  (6,   8,  $2,  __ )
6  (3, 11,  $5,  __ )
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i vi pi sol(i)  ($, money) sol(i) used i In optimal solution

0 0 -1 0

1 5 0 5 = max{0, 5+0} Yes

2 6 0 6 = max{5, 6+0} Yes yes

3 3 2 9 = max{6,3+6} Yes yes

4 2 1 9 = max{9, 2+ 5} No

5 2 3 11 = max{9, 2+ 9} Yes yes

6 5 0 11 = max{11, 5+0} No

Optimal value: __11__, jobs picked to get this value: 5,3,2
_________

Solve the problem:
Steps: one step for each job.
Option: pick it or not    (pick job i or not pick it)
Smaller problems: 2: 

pb1 = jobs 1 to i-1,     =>    sol(i-1)     
pb2 = jobs 1 to p(i)   (where p(i) is the last job before i

that does not overlap with i.   => sol(p(i))    
Solution function: 

sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

Time complexity: ______

Original problem:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

After preprocessing 
(sorted by END time):
JobId (start, end, value, p(i))
1  (1,   4,  $5,  __ ) 
2  (2,   5,  $6,  __ )
3  (5,   6,  $3,  __ )
4  (4,   7,  $2,  __ )
5  (6,   8,  $2,  __ )
6  (3, 11,  $5,  __ )



14

i vi pi sol(i) sol(i) used i In optimal solution

0 0 -1 0 -

1 5 0 5 = max{0, 5+0} Y

2 6 0 6 = max{5, 6+0} Y Y

3 3 2 9 = max{6, 3+6} Y Y

4 2 1 9 = max{9, 2+5} N

5 2 3 11 = max{9, 2+9} Y Y

6 5 0 11 = max{11, 5+0} N

Optimal value: 11, jobs picked to get this value: 2,3,5

Solve the problem:
Steps: one step for each job.
Option: pick it or not    (pick job i or not pick it)
Smaller problems: 2: 

pb1 = jobs 1 to i-1,     =>    sol(i-1)     
pb2 = jobs 1 to p(i)   (where p(i) is the last job before i

that does not overlap with i.   => sol(p(i))    
Solution function: 

sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

Original problem:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

After preprocessing 
(sorted by END time):
JobId (start, end,  value, p(i))
1  (1,   4,  $5,  _0_ ) 
2  (2,   5,  $6,  _0_ )
3  (5,   6,  $3,  _2_ )
4  (4,   7,  $2,  _1_ )
5  (6,   8,  $2,  _3_ )
6  (3, 11,  $5,  _0_ )

Time complexity: O(n)    (if data is preprocessed)

O(nlgn) (if jobs need to be sorted first and an nlgn sorting algorithm was used, and binary search for finding p(i) )



Another example

• Notations conventions:
– Jobs are already sorted by end time

– Horizontal alignment is based on time.  In this example, only 
consecutive jobs overlap, (e.g. jobs 1 and 3 do not overlap). 
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Time complexity: O(n)

Job valueJob (ID)

duration E.g.:
(Job, start, end, value)
(1,    3pm, 5pm, 2$) 
(2, 4pm, 6pm, 3$)
(3,    5pm, 7pm, 2$)
(4, 6pm, 8pm, 4$)
(5,    7pm, 9pm, 2$)



Recovering the Solution

• Example showing that when computing the optimal gain, we 
cannot decide which jobs will be part of the solution and 
which will not. We can only recover the jobs picked AFTER we 
computed the optimum gain and by going from end to start.
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2

3

2

4

2

1

2

i vi pi sol(i) sol(i) used i In optimal 
solution

0 0 0 0 - -

1 2 0 2 Yes -

2 3 0 3 Yes Yes

3 2 1 4 Yes -

4 4 2 7 Yes Yes

5 2 3 7 No -

3

4

5

Time complexity: O(n)



Job Scheduling –
Brute Force Solution

• For each job we have the option to 
include it (1) or not(0). Gives:
– The power set for a set of 5 elements, or

– All possible permutations with repetitions 
over n positions with values 0 or 1=> O(2n) 

– Note: exclude sets with overlapping jobs.

• Time complexity: O(2n) 
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1 2 3 4 5 Valid Total 
value

0 0 0 0 0 yes 0

0 0 0 0 1 yes 2

0 0 0 1 0 yes 4

0 0 0 1 1 no

0 0 1 0 0 yes 2

0 0 1 0 1 yes 4 (=2+2)

0 0 1 1 1 no

… … … … … … …

1 1 1 1 1 no

2

3

2

4

2

1

2

3

4

5



Bottom-up (BEST)

// Bottom-up (the most efficient solution)

int js_iter(int* v, int*p, int n){

int j, with_j, without_j;

int sol[n+1];  

// optionally, may initialize it to -1 for safety  

sol[0] = 0; 

for(j = 1; j <= n; j++){

with_j = v[j] + sol[p[j]];

without_j = sol[j-1];

if ( with_j >= without_j)

sol[j] = with_j;

else

sol[j] = without_j;

}

return sol[n];

}
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Math function: 
sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

The program will create an populate an 
array, sol, corresponding to the sol
function from the math definition.

The sol array must have size n+1 b.c.
we must access indexes from 0 to n.

j vj pj sol[j]

0 0 -1 0

1 5 0 5 = max{0, 5+0}

2 6 0 6 = max{5, 6+0}

3 3 2 9 = max{6, 3+6}

4 2 1 9 = max{9, 2+5}

5 2 3 11 = max{9, 2+9}

6 5 0 11 = max{11, 5+0}

Time complexity: Θ(N), Space complexity:  Θ(N)



Recursive (inefficient) – SKIP for now, Fall 2020

// Inefficient recursive solution:

int jsr(int* v, int*p, int n){

if (n == 0) return 0;

int res;

int with_n = v[n] + jsr(v,p,p[n]);

int without_n = jsr(v,p,n-1);

if ( with_n >= without_n)

res = with_n;

else

res = without_n;

return res;

}
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Math function: 
sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}

In the recursive version:
- We write the solution for problem size n
- Instead of a look-up in the array, we make a 
recursive call for the smaller problem size.
- It will recompute the answer for the  same 
problem  multiple times (instead of saving it and 
looking it up) and that will make it inefficient.

j vj pj sol[j]

0 0 -1 0

1 5 0 5 = max{0, 5+0}

2 6 0 6 = max{5, 6+0}

3 3 2 9 = max{6, 3+6}

4 2 1 9 = max{9, 2+5}

5 2 3 11 = max{jsr(v,p,4), 2+jsr(v,p,3)}

6 5 0 11 = max{jsr(v,p5), 5+jsr(v,p,0)}



Memoization (Recursion 
combined with saving) 

// Memoization efficient recursive solution:

int jsm(int* v, int*p, int n, int* sol){

if (sol[n] != -1) // already computed. 

return sol[n]; // Used when rec call for a smaller problem.

int res;

int with_n = v[n] + jsm(v,p,p[n],sol);

int without_n = jsm(v,p,n-1,sol);

if ( with_n >= without_n)  res = with_n;

else           res = without_n;

sol[n] = res;

return res;

}
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int jsr_out(int* v, int*p, int n){

int sol[n+1];  

int j; 

sol [0] = 0;

for (j = 1; j<= n; j++)  sol [j] = -1; //not computed

jsm(v,p,n,sol);

return sol[n];   

}

Math function: 
sol(0) = 0
𝑠𝑜𝑙 𝑖 = max{𝑠𝑜𝑙 𝑖 − 1 , 𝑣 𝑖 + 𝑠𝑜𝑙(𝑝 𝑖 )}
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10

9

86

8

7 7

65

5044

1 3

00 2

0 1

2

Function call tree for the memoized
version

Round nodes – internal nodes. Require recursive calls.
Square nodes – leaves, show calls that return without 
any new recursive calls.

Yes, 
use job 10

No, do not use job 10 

i

i-1pi

Yes, 
use job i

No, do not use job i

To estimate the number of method calls note that every problem 
size is an internal node only once and that every node has exactly 
0 or 2 children.  A property of such trees states that the number 
of leaves is one more than the number of internal nodes => there 
are at most (1+2N) calls.  Here: N = 10 jobs to schedule.

Job i p(i)

1 0

2 0

3 2

4 1

5 4

6 0

7 5

8 7

9 6

10 8



Fibonacci Numbers
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Fibonacci Numbers

• Generate Fibonacci numbers

– 3 solutions: inefficient recursive, memoization (top-down 
dynamic programming (DP)), bottom-up DP. 

– Not an optimization problem but it has overlapping 
subproblems => DP eliminates recomputing the same 
problem over and over again.
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Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2: 

Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

• How can we write a function that computes Fibonacci 
numbers?

24



Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:        Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

• Consider this function: what is its running time?

25

int Fib(int i)
{ 

if (i < 1) return 0;
if (i == 1) return 1;
return Fib(i-1) + Fib(i-2);

}

Notice the mapping/correspondence of the mathematical expression and code.



Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:        Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

• Consider this function: what is its running time?
– g(N) = g(N-1) + g(N-2) + constant

g(N) ≥ Fibonacci(N) =>  g(N) = Ω(Fibonacci(N))  => g(N) = Ω(1.618N)

Also g(N) ≤ 2g(N-1)+constant => g(N) ≤ c2N => g(N) = O(2N)

=> g(N) is exponential

– We cannot compute Fibonacci(40) in a reasonable amount of time 
(with this implementation).

– See how many times this function is executed.

– Draw the tree

26

int Fib(int i)
{ 

if (i < 1) return 0;
if (i == 1) return 1;
return Fib(i-1) + Fib(i-2);

}



Fibonacci Numbers
• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:        Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

• Alternative to inefficient recursion:  compute from small to large and store 
data in an array.
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exponential version:

int Fib(int i)  { 
if (i < 1) return 0;
if (i == 1) return 1;
return Fib(i-1) + Fib(i-2);

}

linear version (Iterative, bottom-up ):

int Fib_iter (int i)  { 
int F[i+1];
F[0] = 0;    F[1] = 1;
int k;
for (k = 2; k <= i; k++) F[k] = F[k-1] + F[k-2];
return F[i];

}

Notice the mapping/correspondence of the mathematical expression and code.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F



Applied scenario
• F(N) = F(N-1)+F(N-2), F(0) = 0, F(1) = 1,

• Consider a webserver where clients can ask what the value of a 
certain Fibonacci number, F(N) is, and the server answers it. 

How would you do that?  (the back end, not the front end)

(Assume a uniform distribution of F(N) requests over time most F(N) will be asked.)

• Constraints:
– Each loop iteration or function call costs you 1cent.

– Each loop iteration or function call costs the client 0.001seconds wait time

– Memory is cheap  

• How would you charge for the service? (flat fee/function calls/loop 

iterations?)

• Think of some scenarios of requests that you could get. Think of it 
with focus on:
– “good sequence of requests” 

– “bad sequence of requests”

– Is it clear what good and bad refer to here?
28



Fibonacci Numbers
• Fibonacci(0) = 0 , Fibonacci(1) = 1

• If N >= 2:        Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2) 

• Alternative: remember values we have already computed.

• Draw the new recursion tree and discuss time complexity.
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exponential version:

int Fib(int i)  { 
if (i < 1) return 0;
if (i == 1) return 1;
return Fib(i-1) + Fib(i-2);

}

memoized version:

int Fib_mem_wrap(int i) {
int sol[i+1];
if (i<=1) return i;
sol[0] = 0;  sol[1] = 1;
for(int k=2; k<=i; k++)  sol[k]=-1;
Fib_mem(i,sol);
return sol[i];

}
int Fib_mem (int i, int[] sol)  { 

if (sol[i]!=-1) return sol[i];
int res = Fib_mem(i-1, sol) + Fib_mem(i-2, sol);
sol[i] = res;
return res;

}



Fibonacci and DP

• Computing the Fibonacci number is a DP problem.

• It is a counting problem (not an optimization one).

• We can make up an ‘applied’ problem for which the 
DP solution function is the Fibonacci function. 
Consider: A child can climb stairs one step at a time 
or two steps at a time (but he cannot do 3 or more 
steps at a time). How many different ways can they 
climb? E.g. to climb 4 stairs you have 5 ways: 
{1,1,1,1}, {2,1,1}, {1,2,1}, {1,1,2}, {2,2}

30
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The Knapsack Problem

Image from Wikipedia: 
https://en.wikipedia.org/wiki/Knapsack_problem

Problem: 
• A thief breaks into a store.
• The maximum total weight that he can carry is W.
• There are N types of items at the store. 
• Each type ti has a value vi and a weight wi.
• What is the maximum total value that he can carry out?
• What items should he pick to obtain this maximum value?

Variations based on item availability:
• Unlimited amounts – Unbounded Knapsack
• Limited amounts     – Bounded Knapsack
• Only one item          – 0/1 Knapsack

• Items can be ‘cut’ – Continuous Knapsack                       
(or Fractional Knapsack)

https://en.wikipedia.org/wiki/Knapsack_problem


Variations of the Knapsack Problem
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Fractional:
For each item can take the 
whole quantity, or a fraction 
of the quantity.

flour soda

Unbounded:
Have unlimited number of each object.
Can pick any object, any number of times.
(Same as the stair climbing with gain.)

Bounded:
Have a limited number of each object.
Can pick object i, at most xi times.

0-1 (special case of Bounded):
Have only one of each object.
Can pick either pick object i, or 
not pick it.
This is on the web.

All versions have:

N number of different types 
of objects

W the maximum capacity  (kg)

v1, v2, …,vN Value for each object.    ($$)

w1, w1,
…, wN,

Weight of each object.  (kg)

The bounded version will have the amounts: 
c1,c2,…, cN of each item.



Worksheet: Unbounded Knapsack  

33

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sol

Picked

A, 3, 4

B, 4, 6

C, 7,11

D, 8,13

E, 9,15

Rows A,B,C,D,E are used to compute the final solution, in Sol and Picked. They show your work. 

Max capacity: W=17

Item type: A B C D E

Weight (kg) 3 4 7 8 9

Value   ($$) 4 6 11 13 15

so
lu

ti
o

n
W

o
rk

 (t
o

 c
o

m
p

u
te

  s
o

lu
ti

o
n

)

Math cost function:
𝑆𝑜𝑙 𝑘 = 0, ∀𝑘 < min

1≤𝑖≤𝑛
𝑤𝑖

(𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠, 𝑛𝑜 𝑖𝑡𝑒𝑚 𝑓𝑖𝑡𝑠)
𝑆𝑜𝑙 𝑘 = max

∀𝑖,𝑠.𝑡.𝑤𝑖≤𝑘
(1≤𝑖≤𝑛)

{𝑣𝑎𝑙𝑖 + 𝑆𝑜𝑙(𝑘 − 𝑤𝑖)}

Where 𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒



Answers: Unbounded 
Knapsack
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sol 0 0 0 4 6 6 8 11 13 15 15 17 19 21 22 24 26 28

Picked - - - A B B A C D E A A A B C C C D

A, 3, 4 - - - 0,4 1,4 2,4 3,8 4, 
10

5, 
10

6, 
12

7, 
15

8, 
17

9, 
19

10, 
19

11, 
21

12, 
23

13, 
25

14, 
26

B, 4, 6 - - - - 0, 6 1,6 2, 6 3,  
10

4, 
12

5, 
12

6, 
14

7, 
17

8,
19

9,  
21

10, 
21

11, 
23

12, 
25

13, 
27

C, 7,11 - - - - - - - 0,
11

1, 
11

2, 
11

3, 
15

4, 
17

5,  
17

6,  
19

7, 
22

8,
24

9,
26

10,
26

D,8,13 - - - - - - - - 0, 
13

1, 
13

2, 
13

3, 
17

4,  
19

5,
19

6,
21

7,
24

8,
26

9,
28

E,9,15 - - - - - - - - - 0, 
15

1, 
15

2, 
15

3,  
19

4,
21

5,
21

6,
23

7,
26

8,
28

Red – optimal, underscore – value(money)

Math cost function:
𝑆𝑜𝑙 𝑘 = 0, ∀𝑘 < min

1≤𝑖≤𝑛
𝑤𝑖

(𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠, 𝑛𝑜 𝑖𝑡𝑒𝑚 𝑓𝑖𝑡𝑠)
𝑆𝑜𝑙 𝑘 = max

∀𝑖,𝑠.𝑡.𝑤𝑖≤𝑘
(1≤𝑖≤𝑛)

{𝑣𝑎𝑙𝑖 + 𝑆𝑜𝑙(𝑘 − 𝑤𝑖)}

Where 𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒



Unbounded Knapsack –
recover the items
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Kg   0    1    2    3    4    5   6    7   8 9   10   11   12   13   14   15 16   17   18   19  20    21   22   
ID  -1   -1   -1    A    B    B A    C   D  E   A   A A A C  A C     A     E   A    A A A
$$   0    0    0    4    5    5    8   10   11   13   14  15   17   18   20   21 23   24   26   27   28   30   31 

Find the items that give the optimal value. For example in the data below, 
what items will give me value 31 for a max weight of 22?

Note that the item values are different from those on the previous page. 
(They are from a different problem instance.)

Item type: A B C D E

Weight (kg) 3 4 7 8 9

ID of picked item



Unbounded Knapsack –
recover the items
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Kg   0    1    2    3    4    5   6    7   8 9   10   11   12   13   14   15 16   17   18   19  20    21   22   
ID  -1   -1   -1    A    B    B A    C   D  E A   A A A C  A C     A     E   A    A A A
$$   0    0    0    4    5    5    8   10   11   13   14  15   17   18   20   21 23   24   26   27   28   30   31 

Find the items that give the optimal value. For example in the data below, 
what items will give me value 31 for a max weight of 22?

Note that the item values are different from those on the previous page. 
(They are from a different problem instance.)

–weight(A)
19=22-3

– 3
16=19-3

– weight(C)
9 = 16 - 7

– weight(E)
0 = 9 - 9

Item type: A B C D E

Weight (kg) 3 4 7 8 9

Answer: E, C, A, A



Iterative Solution for Unbounded Knapsack
/* Assume arrays v and w store the item info starting at  

index 1: first item has value v[1] and weight w[1]   */

int knapsack(int W, int n, int * v, int * w){

int sol[W+1]; int picked[W+1];

sol[0] = 0;

for(k=1; k<=W; k++) {

mx = 0; choice = -1; // no item 

for(i=0;i<n;i++) {

if (k>=w[i]) {

with_i = v[i]+sol[k-w[i]];

if (mx < with_i) {

mx = with_i;

choice = i;

}

}// for i

sol[k]=mx; picked[k] = choice;

}// for k  

return sol[W];

} //Time: Θ(nW) [pseudo polynomial: store W in lgW bits] Space: Θ(W)
37

Math cost function:
𝑆𝑜𝑙 𝑘 = 0, ∀𝑘 < min

1≤𝑖≤𝑛
𝑤𝑖

(𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒𝑠, 𝑛𝑜 𝑖𝑡𝑒𝑚 𝑓𝑖𝑡𝑠)
𝑆𝑜𝑙 𝑘 = max

∀𝑖,𝑠.𝑡.𝑤𝑖≤𝑘

(1≤𝑖≤𝑛)

{𝑣𝑎𝑙𝑖 + 𝑆𝑜𝑙(𝑘 − 𝑤𝑖)}

Where 𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒



Worksheet:  0/1 Knapsack (not fractional)
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No item

A, 3, 4

B, 4, 6

C, 7,11

D, 8,13

E, 9,15

Value_using_first_i_items:
Sol[i] [k] = max{Sol[i-1] [ k – w[i]] + v[i], Sol[i-1] [k]

optimal solution (for a smaller
problem size), excluding item i

optimal solution (for this
problem size), excluding item i

Math cost function:
𝑆𝑜𝑙 0, 𝑘 = 0, ∀𝑘
Sol(i, k) = 0, , ∀𝑘 s.t. 𝑘 < min

∀0≤𝑡≤𝑖
𝑤𝑡

𝑆𝑜𝑙 𝑖, 𝑘 =
max{𝑠𝑜𝑙 𝑖 − 1, 𝑘 , 𝑣𝑖 + 𝑠𝑜𝑙(𝑖 − 1, 𝑘 − 𝑤𝑖)}

Where 𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒



Answer:  0/1 Knapsack (not fractional)
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index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No item 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A, 3, 4 0 0 0 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4*

B, 4, 6 0 0 0 4 6* 6* 6* 10* 10* 10* 10* 10* 10* 10* 10* 10* 10*

C, 7,11 0 0 0 4 6 6 6 11* 11* 11* 15* 17* 17* 17* 21* 21* 21*

D, 8,13 0 0 0 4 6 6 6 11 13* 13* 15 17* 19* 19* 21 24* 24*

E, 9,15 0 0 0 4 6 6 6 11 13 15* 15* 17 19* 21* 21* 24 26*

Value_using_first_i_items:
Sol[i] [k] = max{Sol[i-1] [ k – w[i]] + v[i], Sol[i-1] [k]

optimal solution (for a smaller
problem size), excluding item i

optimal solution (for this
problem size), excluding item i

E.g.:  Value_using_first_3_items(A,B,C): Sol[3] [14] = max{Sol[2] [14 - 7] +11, Sol[2] [7] = max{10+11, 10} = 21

0

1

2

3

4

5

+11

Math cost function:
𝑆𝑜𝑙 0, 𝑘 = 0, ∀𝑘
Sol(i, k) = 0, , ∀𝑘 s.t. 𝑘 < min

∀0≤𝑡≤𝑖
𝑤𝑡

𝑆𝑜𝑙 𝑖, 𝑘 =
max{𝑠𝑜𝑙 𝑖 − 1, 𝑘 , 𝑣𝑖 + 𝑠𝑜𝑙(𝑖 − 1, 𝑘 − 𝑤𝑖)}

Where 𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑖𝑧𝑒



Iterative Solution for  0/1 Knapsack
/* Assume arrays v and w store the item info starting at  

index 1: first item has value v[1] and weight w[1]   */

int knapsack01(int W, int n, int * v, int * w){

int sol[n+1][W+1]; 

for(k=0; k<=W; k++) { sol[0][k] = 0;}

for(i=1; i<=n; i++) {

for(k=0;k<=W;k++) {

sol[i][k] = sol[i-1][k]; // solution without item i

if (k>w[i]) {

with_i = v[i]+sol[i-1][k-w[i]];

if (sol[i][k] < with_i) {   // better choice

sol[i][k] = with_i;      // keep it

}

}

}// for k

}// for i  

return sol[n][W];

} // Time: Θ(nW) Space: Θ(nW) [pseudo polynomial] 40



Unbounded vs 0/1 Knapsack
Solutions

• Unbounded (unlimited number of items) 

– Need only one (or two) 1D arrays: sol (and picked) of size (max_weight+1).

– The other rows (one per item) are added to show the work that we do in order to figure 
out the answers that go in the table. There is NO NEED to store it.

– Similar problem:  Minimum Number of Coins for Change (solves a minimization, not a 
maximization problem): https://www.youtube.com/watch?v=Y0ZqKpToTic

• 0/1 (most web resources show this problem)

– MUST HAVE one or two 2D tables, of size: (items+1) x (max_weight+1).

– Each row (corresponding to an item) gives the solution to the problem using items from 
rows 0 to that row. 

– Whenever you look back to see the answer for a precomputed problem you look 
precisely on the row above because that gives a solution with the items in the rows 
above (excluding this item).
• Unbounded knapsack can repeat the item => no need for sol excluding the current item => 1D
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https://www.youtube.com/watch?v=Y0ZqKpToTic


Improving memory usage

• Optimize the memory usage: store only smaller problems that are needed.

• NOTE: if a sliding window is used the choices cannot be recovered (i.e. cannot 
recover what items to pick to achieve the computed optimal value).

• Unbounded : the sliding window size is the max of the items weights => 
Θ(maxi(wi))

• 0/1: the sliding window is 2 rows from the table => Θ(W)

• Draw the sliding window arrays for the above problems.

• How do you update the arrays?

• Note: the sliding window term is used in another context (for a specific type 
of DP problems) and it means something else, so do NOT read the web 
resources on sliding window as they will NOT refer to the same thing.
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Hint for DP problems

• For a DP problem you can typically write a MATH 
function that gives the solution for problem of size N 
in terms of smaller problems.

• It is straightforward to go from this math function to 
code:

– Iterative: The math function  ‘maps’ to the sol array

– Recursive: The math function ‘maps’ to recursive calls

• Typically the math function will be a

– Min/max (over itself applied to smaller N)

– Sum (over itself applied to smaller N)
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2D Matrix Traversal

P1. All possible ways to traverse a 2D matrix. 
– Start from top left corner and reach bottom right corner.

– You can only move: 1 step to the right or one step down at a time. (No 
diagonal moves).

– Variation:  Allow to move in the diagonal direction as well.

– Variation: Add obstacles (cannot travel through certain cells).

P2. Add fish of various gains. Take path that gives the most gain.  
– Variation: Add obstacles.
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Other DP Problems

• Rod cutting

• Stair climbing

• Make amount with smallest number of coins

• Matrix with gain

• House robber

• Many more on leetcode.
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Application of the Knapsack 
problem

• https://en.wikipedia.org/wiki/Knapsack_problem

One early application of knapsack algorithms was in the construction and scoring of 
tests in which the test-takers have a choice as to which questions they answer. For 
small examples, it is a fairly simple process to provide the test-takers with such a 
choice. For example, if an exam contains 12 questions each worth 10 points, the test-
taker need only answer 10 questions to achieve a maximum possible score of 100 
points. However, on tests with a heterogeneous distribution of point values, it is more 
difficult to provide choices. Feuerman and Weiss proposed a system in which students 
are given a heterogeneous test with a total of 125 possible points. The students are 
asked to answer all of the questions to the best of their abilities. Of the possible 
subsets of problems whose total point values add up to 100, a knapsack algorithm 
would determine which subset gives each student the highest possible score
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https://en.wikipedia.org/wiki/Knapsack_problem

