
Dynamic Programming

Job Scheduling

Knapsack

Fibonacci

Stair Climbing

CSE 3318 –Algorithms and Data Structures

University of Texas at Arlington

Alexandra Stefan

(Includes images, formulas and examples from CLRS, Dr. Bob Weems, wikipedia)

13/28/2024

Steps for iterative (bottom up) solution

1. Identify trivial problems

1. typically where the size is 0

2. Look at the last step/choice in an optimal solution:
1. Assuming an optimal solution, what is the last action in

completing it?

2. Are there more than one options for that last action?

3. If you consider each action, what is the smaller problem
that you would combine with that last action?

1. Assume that you have the optimal answer to that smaller problem.

4. Generate all these solutions

5. Compute the value (gain or cost) for each of these
solutions.

6. Keep the optimal one (max or min based on problem)

3. Make a 1D or 2D array and start feeling in answers
from smallest to largest problems.

2

Other types of solutions:
1. Brute force solution
2. Recursive solution (most

likely exponential and
inefficient)

3. Memoized solution

3

The 0-1 Knapsack Problem

Image from Wikipedia:
https://en.wikipedia.org/wiki/Knapsack_problem

Problem:
• A thief breaks into a store.
• The maximum total weight that he can carry is W.
• There are N items at the store.
• Each item has a value vi and a weight wi.
• There is only one of each item.
• What is the maximum total value that he can take

without exceeding capacity W?
• What items should he pick to obtain this maximum

value?
Problem variations based number of items:
• Unlimited amounts – Unbounded Knapsack
• Limited amounts – Bounded Knapsack

𝑠𝑜𝑙[0, k] = 0, ∀𝑘
𝑠𝑜𝑙 i, 0 = 0,∀𝑖

𝑠𝑜𝑙[𝑖, 𝑘] =
𝑠𝑜𝑙 𝑖 − 1,𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1, 𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1, 𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

What is a smaller problem?

What problem is trivial?

https://en.wikipedia.org/wiki/Knapsack_problem

Brute force approach

• See problem presented in table.

1. What are all possible combinations?

2. How many combinations are there in total?

3. What do I want to avoid?

4. Does the order in which I make my choices matter?

4

Max capacity: W=8

item Weight
(Kg)

Value
($)

A 4 5

B 3 4

C 2 3

D 1 2

Developing the solution

1. Find stepping stones toward a solution
1. what do I make choices on? ____________

2. does their order matter? ______________

2. Trivial, smallest problem(s): (think 0)
1. _______________________

2. _____________________

3. What is my last choice? __________________

4. Write the answer for the original problem in terms of
smaller problems

5. (Check that this is not a brute-force approach)

6. Formulate problem description

__
5

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

Worksheet: 0-1 Knapsack Example 1

6

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

0 1 2 3 4 5 6 7 8

0 No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Let Knap(n,{….},W)-Knapsack pb
for n items, and max capacity W
E.g.
Knap(n=4,{A,B,C,D},W=8)

Smaller problems:

Knap(n=4,{A,B,C,D},W=8)
What choices do we have? (especially related to
consecutive problems in size)

For one item :

E.g. for item D:

 sol is

E.g. for choice at item D sol is

Meaning of
cell at [0][5] = _________________________

cell at [3][0] = _________________________

cell at [4][8] = _________________________

cell at [3][8] = _________________________

cell at [3][7] = _________________________

Worksheet: 0-1 Knapsack Example 1

7

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

0 1 2 3 4 5 6 7 8

0 No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Let Knap(n,{….},W)-Knapsack pb
for n items, and max capacity W
E.g.
Knap(n=4,{A,B,C,D},W=8)

Smaller problems:

Knap(n=4,{A,B,C,D},W=8)
What choices do we have? (especially related to
consecutive problems in size)

For one item :

E.g. for item D:

 sol is

E.g. for choice at item D sol is

Meaning of
cell at [0][5] = _________________________

cell at [3][0] = _________________________

cell at [4][8] = _________________________

cell at [3][8] = _________________________

cell at [3][7] = _________________________

Worksheet: 0-1 Knapsack Example 1

8

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

0 1 2 3 4 5 6 7 8

0 No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Let Knap(n,{….},W)-Knapsack pb
for n items, and max capacity W
E.g.
Knap(n=4,{A,B,C,D},W=8)

Smaller problems:

_Knap (n=4,{A,B,C,D}, W=7)___

_Knap (n=4,{A,B,C,D}, W=6)___

_Knap (n=4,{A,B,C,D}, W=0)___

_Knap (n=3,{A,B,C}, W=8)___

_Knap (n=2,{A,B}, W=8)___

_Knap (n=0,{ }, W=8)___

Note that we use the same
order for the items: A,B,C,D.
=> for n=3 only {A,B,C} (no {A,B,D})

Knap(n=4,{A,B,C,D},W=8)
What choices do we have? (especially related to
consecutive problems in size)

For one item : - do not take it
- take it

E.g. for item D: - do not take D
- take D

 sol is max of solutions for each choice

E.g. for choice at item D sol is max of:
- Knap(n=3,{A,B,C},W=8) (do not take D)

- value(D)+Knap(n=3,{A,B,C},W=8-weight(D)) (take D
if it fits)

Meaning of
cell at [0][5] = Sol for Knap(n=0,{}, W=5)

cell at [3][0] = Sol for Knap(n=3,{A,B,C}, W=0)

cell at [4][8] = Sol for Knap(n=4,{A,B,C,D},W=8)

cell at [3][8] = Sol for Knap(n=3,{A,B,C}, W=8)

cell at [3][7] = Sol for Knap(n=3,{A,B,C}, W=7)

Worksheet: 0-1 Knapsack Example 1

9

0 1 2 3 4 5 6 7 8

No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Take out paper and draw the table below: 5 rows, 9 columns
• rows = number of items+1
• columns = W+1

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

Worksheet: 0-1 Knapsack Example 1

10

0 1 2 3 4 5 6 7 8

No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Fill in the table. After that, write the solution formula.

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

Worksheet: 0-1 Knapsack Example 1 - Answers

11

0 1 2 3 4 5 6 7 8

No item
, kg, $

0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

A, 4, 5 0 . 0 . 0 . 0 . 5* 5* 5* 5* 5*

B, 3, 4 0 . 0 . 0 . 4* 5 . 5 . 5 . 9* 9*

C, 2, 3 0 . 0 . 3* 4 . 5 . 7* 8* 9 . 9 .

D, 1, 2 0 . 2* 3 . 5* 6* 7 . 9* 10* 11*

𝑠𝑜𝑙 0 [k] = 0, ∀𝑘
𝑠𝑜𝑙 i][0 = 0, ∀𝑖

𝑠𝑜𝑙 𝑖 [𝑘] =
𝑠𝑜𝑙 𝑖 − 1][𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1][𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1][𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

0

1

2

3

4

Value using first i items:
sol[i] [k] = max{sol[i-1] [k] , sol[i-1] [k – w[i]] + v[i]}

sol[i][k] – optimal solution for 0-1 Knapsack of max
capacity k with only the first i items, 1,2,…,i,.

At row (i-1) we have optimal solutions WITHOUT item i.

Where is the final answer to the original problem? ________
What items give that money? _________________

Max capacity: W=8

item Weight
(Kg)

Value
($)

A 4 5

B 3 4

C 2 3

D 1 2

Worksheet: 0-1 Knapsack Example 1 - Backtrace

12

0 1 2 3 4 5 6 7 8

No item
, kg, $

0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

A, 4, 5 0 . 0 . 0 . 0 . 5* 5* 5* 5* 5*

B, 3, 4 0 . 0 . 0 . 4* 5 . 5 . 5 . 9* 9*

C, 2, 3 0 . 0 . 3* 4 . 5 . 7* 8* 9 . 9 .

D, 1, 2 0 . 2* 3 . 5* 6* 7 . 9* 10* 11*

𝑠𝑜𝑙 0 [k] = 0, ∀𝑘
𝑠𝑜𝑙 i][0 = 0, ∀𝑖

𝑠𝑜𝑙 𝑖 [𝑘] =
𝑠𝑜𝑙 𝑖 − 1][𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1][𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1][𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

0

1

2

3

4

Value using first i items:
sol[i] [k] = max{sol[i-1] [k] , sol[i-1] [k – w[i]] + v[i]}

sol[i][k] – optimal solution for 0-1 Knapsack of max
capacity k with only the first i items, 1,2,…,i,.

At row (i-1) we have optimal solutions WITHOUT item i.

Where is the final answer to the original problem? 11
What items give that money? Backtrace from cell[4][8] gives: A,B,D

Backtrace:
choice[4][8] -> * -> D

row--, column = 8-weight(D)

choice[3][7] -> ->
row--,

choice[2][7] -> * -> B
row--, column = 7-weight(B)

choice[1][4] -> * -> A
row--, column = 4-weight(A)

choice[0][0] stop
(either row or column is 0)

Max capacity: W=8

item Weight
(Kg)

Value
($)

A 4 5

B 3 4

C 2 3

D 1 2

Redo this problem with order: A,B,D,C

13

Worksheet: 0-1 Knapsack Example 2

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No item

kg, $

A, 3, 4

B, 4, 6

C, 7,11

D, 8,13

E, 9,15

Max capacity: W=16

item weight Value

A 3 4

B 4 6

C 7 11

D 8 13

E 9 15

𝑠𝑜𝑙 0 [k] = 0, ∀𝑘
𝑠𝑜𝑙 i][0 = 0, ∀𝑖

𝑠𝑜𝑙 𝑖 [𝑘] =
𝑠𝑜𝑙 𝑖 − 1][𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1][𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1][𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

0

1

2

3

4

5

Final answer: _____ Items that give this value: ___________________

Answer: 0-1 Knapsack –Example 2

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No item

kg, $
0. 0. 0. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

A, 3, 4 0. 0. 0. 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4* 4*

B, 4, 6 0. 0. 0. 4 . 6* 6* 6* 10* 10* 10* 10* 10* 10* 10* 10* 10* 10*

C, 7,11 0. 0. 0. 4 . 6 . 6 . 6 . 11* 11* 11* 15* 17* 17* 17* 21* 21* 21*

D, 8,13 0. 0. 0. 4 . 6 . 6 . 6 . 11 . 13* 13* 15 . 17* 19* 19* 21 . 24* 24*

E, 9,15 0. 0. 0. 4 . 6 . 6 . 6 . 11 . 13 . 15* 15* 17 . 19* 21* 21* 24 . 26*

Value using first i items:
sol[i] [k] = max{sol[i-1] [k] , sol[i-1] [k – w[i]] + v[i]}

sol[i][k] – optimal solution for 0-1 Knapsack of max
capacity k with only the first i items, 1,2,…,i,.

At row (i-1) we have optimal solutions WITHOUT item i.

E.g.: Solution using first 3 items(A,B,C) for max capacity 15: sol[3] [15] = max{sol[2] [8], sol[2] [15 - 7] +11} = max{ 10, 10+11 } = 21

0

1

2

3

4

5

10+11

𝑠𝑜𝑙 0 [k] = 0, ∀𝑘
𝑠𝑜𝑙 i [0] = 0, ∀𝑖

𝑠𝑜𝑙 𝑖 [𝑘] =
𝑠𝑜𝑙 𝑖 − 1][𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1][𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1][𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

10

Final answer: _____ Items that give this value: ___________________

Max capacity: W=16

item weight Value

A 3 4

B 4 6

C 7 11

D 8 13

E 9 15

Iterative Solution for 0-1 Knapsack
/* Assume arrays v and w store the item info starting at index 1:

first item has value v[1] and weight w[1] */

int knapsack01(int W, int n, int * v, int * w){

int sol[n+1][W+1];

for(k=0; k<=W; k++) { sol[0][k] = 0;}

for(i=1; i<=n; i++) {

for(k=0;k<=W;k++) {

sol[i][k] = sol[i-1][k]; // solution without item i

if (k>w[i]) {

with_i = v[i]+sol[i-1][k-w[i]];

if (sol[i][k] < with_i) { // better choice

sol[i][k] = with_i; // keep it

}

}

}// for k

}// for i

return sol[n][W];

} // Time: Θ(nW) Space: Θ(nW) pseudo polynomial in W

// need Θ(n) bits to store n items (values and weights) , but only log_2(W) bits to store W
16

Improving memory usage: Θ(W)

• Optimize the memory usage: store only smaller problems that are needed.
– Store either 2 rows or 2 columns

– the choices cannot be recovered anymore (i.e. cannot recover what items to pick to achieve the
computed optimal value).
• if you need to recover the items, you cannot save space. Youmust use nW space (for the table with yes/no, * no *)

• Space complexity: Θ(W)

• Practice:
– Can you implement this solution?

17

Θ(W)

Hint for DP problems

• For a DP problem you can typically write a MATH function that gives the
solution for problem of size N in terms of smaller problems.

• It is straightforward to go from this math function to code:

– Iterative: The math function ‘maps’ to the sol array

– Recursive: The math function ‘maps’ to recursive calls

• Typically the math function will be a

– Min/max (over itself applied to smaller N)

– Sum (over itself applied to smaller N)

18

Weighted Interval Scheduling

(Job Scheduling)

19

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem:

Given n jobs where each job has a start time, finish time
and value, (sj,fj,vj) select a subset of them that do not
overlap and give the largest total value.

20

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing:

• Add job 0 : (0,0,0)

• Sort jobs by finish time (increasing).

• For each job j, compute p(j), the last job prior to j,
that does not overlap with j.

– p(4) is _ (last job that does not overlap with job 4)

– p(5) is _

21

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

JobId (start, end, value)
0 (
1 (
2 (
3 (
4 (
5 (
6 (

Add job 0
Sort by

finish time

JobId (start, end, value, p(j))
0 (
1 (
2 (
3 (
4 (
5 (
6 (

p(j) - last job prior
to j, that does not

overlap with j

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing:

• Sort jobs by finish time (increasing).

• For each job j, compute p(j), the last job prior to j,
that does not overlap with j.

– p(4) is 1 (last job that does not overlap with job 4)

– p(5) is 3

22

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

JobId (start, end, value)
0 (0, 0, $0)
1 (1, 4, $5)
2 (2, 5, $6)
3 (5, 6, $3)
4 (4, 7, $2)
5 (6, 8, $2)
6 (3, 11, $5)

p(j) - last job prior
to j, that does not

overlap with j

Add job 0
Sort by

finish time

JobId (start, end, value, p(j))
0 (0, 0, $0,)
1 (1, 4, $5,)
2 (2, 5, $6,)
3 (5, 6, $3,)
4 (4, 7, $2,)
5 (6, 8, $2,)
6 (3, 11, $5,)

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing:

• Sort jobs by finish time (increasing).

• For each job j, compute p(j), the last job prior to j,
that does not overlap with j.

– p(4) is 1 (last job that does not overlap with job 4)

– p(5) is 3

23

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

JobId (start, end, value, p(j))
0 (0, 0, $0, -1)
1 (1, 4, $5, 0)
2 (2, 5, $6, 0)
3 (5, 6, $3, 2)
4 (4, 7, $2, 1)
5 (6, 8, $2, 3)
6 (3, 11, $5, 0)

p(j) - last job prior
to j, that does not

overlap with j

Add job 0
Sort by

finish time

JobId (start, end, value)
0 (0, 0, $0)
1 (1, 4, $5)
2 (2, 5, $6)
3 (5, 6, $3)
4 (4, 7, $2)
5 (6, 8, $2)
6 (3, 11, $5)

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

Problem:

– Given n jobs where each job has a start time, finish time and value, (sj,fj,vj)
select a subset of them that do not overlap and give the largest total value.

Preprocessing:
• Sort jobs in increasing order of their finish time. –already done here

• For each job ,j, compute the last job prior to j, p(j), that does not overlap with j.

• TC: O(nlgn) (nlgn sorting and binary search for finding p(j))

24

Solve the problem:
Steps: one step for each job.
Choice: pick job or not
Smaller problems: 2:

pb1 = jobs 1 to j-1, => sol(j-1)
pb2 = jobs 1 to p(j) (where p(j) is the last job before j that does not overlap with j. => sol(p(j))

Solution function (gives the money value: sol(j) = the most money we can make using jobs 1,2,..,j):
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 , 𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

Time complexity: O(n) (if data is already preprocessed) Fill out sol(j) in constant time for each j)
O(nlgn) (with preprocessing)

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

25

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

(s, f, $)
(1, 4, $5)
(2, 5, $6)
(5, 6, $3)
(4, 7, $2)
(6, 8, $2)
(3, 11, $5)

Solve the problem:
Steps: one step for each job.
Option: pick it or not (pick job j or not pick it)
Smaller problems: 2:

pb1 = jobs 1 to j-1, => sol(j-1)
pb2 = jobs 1 to p(j) (where p(j) is the last job before j

that does not overlap with j. => sol(p(j))
Solution function:

sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 , 𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

26

j vj pj j Y/N sol(j) Show work

0 0 -1 0

1 5 0 1

2 6 0 2

3 3 2 3

4 2 1 4

5 2 3 5

6 5 0 6

Optimal value: ___, jobs picked to get this value: ______

Solution function:
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 , 𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

Time complexity: ________ (without preprocessing)

________ (with preprocessing)

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

27

j vj pj j Y/N sol(j) Show work

0 0 -1 0

1 5 0 1

2 6 0 2

3 3 2 3

4 2 1 4

5 2 3 5

6 5 0 6

Optimal value: ___, jobs picked to get this value: ______

Solution function:
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 , 𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

Time complexity: ________ (without preprocessing)

________ (with preprocessing)

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

28

j vj pj sol(j) sol(j) used j In optimal solution

0 0 -1 0 0 0 N

1 5 0 1 5 = max{0, 5+0} 1 Y

2 6 0 2 6 = max{5, 6+0} 2 Y Y

3 3 2 3 9 = max{6, 3+6} 3 Y Y

4 2 1 4 9 = max{9, 2+5} 4 N

5 2 3 5 11 = max{9, 2+9} 5 Y Y

6 5 0 6 11 = max{11, 5+0} 6 N

Optimal value: 11, jobs picked to get this value: 2,3,5

Solve the problem:
Steps: one step for each job.
Option: pick it or not (pick job j or not pick it)
Smaller problems: 2:

pb1 = jobs 1 to j-1, => sol(j-1)
pb2 = jobs 1 to p(j) (where p(j) is the last job before j

that does not overlap with j. => sol(p(j))
Solution function:

sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 , 𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

After preprocessing
(sorted by END time):
JobId (start, end, value, p(j))
1 (1, 4, $5, _0_)
2 (2, 5, $6, _0_)
3 (5, 6, $3, _2_)
4 (4, 7, $2, _1_)
5 (6, 8, $2, _3_)
6 (3, 11, $5, _0_)

Time complexity: O(n) (if data is preprocessed)

O(nlgn) (if jobs need to be sorted first and nlgn sorting algorithm and nlgn for p(j) binary search for finding p(i))

Another example

• Notations conventions:

– Jobs are already sorted by end time (no preprocessing needed)

– Horizontal alignment is based on time. In this example, only
consecutive jobs overlap, (e.g. jobs 1 and 3 do not overlap).

29

2

3

2

4

2

1

2

3

4

5

Time complexity (excluding the preprocessing part): O()

Job valueJob (ID)

duration E.g.:
(Job, start, end, value)
(1, 3pm, 5pm, 2$)
(2, 4pm, 6pm, 3$)
(3, 5pm, 7pm, 2$)
(4, 6pm, 8pm, 4$)
(5, 7pm, 9pm, 2$)

Recovering the Solution

• Example showing that when computing the optimal gain, we
cannot decide which jobs will be part of the solution and
which will not. We can only recover the jobs picked AFTER we
computed the optimum gain and by going from end to start.

30

2

3

2

4

2

1

2

j vj pj sol(j)

sol(j)
used j

In optimal
solution

0 0 0 0 0 0 N

1 2 0 1 2 1 Y

2 3 0 2 3 2 Y Y

3 2 1 3 4 3 Y

4 4 2 4 7 4 Y Y

5 2 3 5 7 5 N

3

4

5

Time complexity (excluding the preprocessing part): O()

Bottom-up (BEST)

// Bottom-up (the most efficient solution)

int js_iter(int* v, int*p, int n){

int j, with_j, without_j;

int sol[n+1];

// optionally, may initialize it to -1 for safety

sol[0] = 0;

for(j = 1; j <= n; j++){

with_j = v[j] + sol[p[j]];

without_j = sol[j-1];

if (with_j >= without_j)

sol[j] = with_j;

else

sol[j] = without_j;

}

return sol[n];

}

31

Math function:
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 ,𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

The program will create an populate an
array, sol, corresponding to the sol
function from the math definition.

The sol array must have size n+1 b.c.
we must access indexes from 0 to n.

j vj pj sol[j]

0 0 -1 0 0

1 5 0 1 5 = max{0, 5+0}

2 6 0 2 6 = max{5, 6+0}

3 3 2 3 9 = max{6, 3+6}

4 2 1 4 9 = max{9, 2+5}

5 2 3 5 11 = max{9, 2+9}

6 5 0 6 11 = max{11, 5+0}

Time complexity: Θ(N), Space complexity: Θ(N)

Job Scheduling –
Brute Force Solution

• For each job we have the option to
include it (1) or not(0). Gives:
– The power set for a set of 5 elements, or

– All possible permutations with repetitions
over n positions with values 0 or 1=> O(__)

– Note: exclude sets with overlapping jobs.

• Time complexity: O(___)

32

1 2 3 4 5 Valid Total
value

0 0 0 0 0 yes 0

0 0 0 0 1 yes 2

0 0 0 1 0 yes 4

0 0 0 1 1 no

0 0 1 0 0 yes 2

0 0 1 0 1 yes 4 (=2+2)

0 0 1 1 1 no

… … … … … … …

1 1 1 1 1 no

2

3

2

4

2

1

2

3

4

5

Job Scheduling –
Brute Force Solution

• For each job we have the option to
include it (1) or not(0). Gives:
– The power set for a set of 5 elements, or

– All possible permutations with repetitions
over n positions with values 0 or 1=> O(2n)

– Note: exclude sets with overlapping jobs.

• Time complexity: O(2n)

33

1 2 3 4 5 Valid Total
value

0 0 0 0 0 yes 0

0 0 0 0 1 yes 2

0 0 0 1 0 yes 4

0 0 0 1 1 no

0 0 1 0 0 yes 2

0 0 1 0 1 yes 4 (=2+2)

0 0 1 1 1 no

… … … … … … …

1 1 1 1 1 no

2

3

2

4

2

1

2

3

4

5

Recursive (inefficient)

// Inefficient recursive solution:

int jsr(int* v, int*p, int n){

if (n == 0) return 0;

int res;

int with_n = v[n] + jsr(v,p,p[n]);

int without_n = jsr(v,p,n-1);

if (with_n >= without_n)

res = with_n;

else

res = without_n;

return res;

}

34

Math function:
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 ,𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

- Write the solution for problem size n
- Make a recursive call for the smaller problem size (instead of array look-up).
- Recomputes multiple times the answer for the same problem (e.g. pb size 2 is
computed 4 times) . That makes it inefficient.

j vj pj

0 0 -1

1 5 0

2 6 0

3 3 2

4 2 1

5 2 3

6 5 0

Memoization (Recursion
combined with saving)

// Memoization efficient recursive solution:

int jsm(int* v, int*p, int n, int* sol){

if (sol[n] != -1) // already computed.

return sol[n]; // Used when rec call for a smaller problem.

int res;

int with_n = v[n] + jsm(v,p,p[n],sol);

int without_n = jsm(v,p,n-1,sol);

if (with_n >= without_n) res = with_n;

else res = without_n;

sol[n] = res;

return res;

}

35

int jsr_out(int* v, int*p, int n){

int sol[n+1];

int j;

sol [0] = 0;

for (j = 1; j<= n; j++) sol [j] = -1; //not computed

jsm(v,p,n,sol);

return sol[n];

}

Math function:
sol(0) = 0
𝑠𝑜𝑙 𝑗 = max{𝑠𝑜𝑙 𝑗 − 1 ,𝑣 𝑗 + 𝑠𝑜𝑙(𝑝 𝑗)}

36

6

05

4 3

3 1

22

1

00

0

Function call tree for the memoized
version

Round nodes – internal nodes. Require recursive calls.
Square nodes – leaves, show calls that return without
any new recursive calls.

No, do not
use job 6 Yes, use job 6

j

pjj-1

Yes, use job jNo, do not use job j

To estimate the number of method calls note that every problem
size is an internal node only once and that every node has exactly
0 or 2 children. A property of such trees states that the number
of leaves is one more than the number of internal nodes => there
are at most (1+2N) calls. Here: N = 6 jobs to schedule.

Job j p(j)

0 -1

1 0

2 0

3 2

4 1

5 3

6 0

0 1 2 3 4 5 6

0 -1 -1 -1 -1 -1 -1sol

Fibonacci Numbers

37

Fibonacci Numbers

• Generate Fibonacci numbers

– 3 solutions: inefficient recursive, memoization (top-down dynamic programming
(DP)), bottom-up DP.

– Not an optimization problem but it has overlapping subproblems => DP
eliminates recomputing the same problem over and over again.

38

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2:

Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• E.g.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
0 1 2 3 4 5 6 7 8 9 10 11

• Write a function

int FibFct(int n)

that computes Fibonacci numbers

E.g. FibFct(7) -> 13 and FibFct(1) -> 1

39

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2: Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Consider this function: what is its running time?

40

Notice the mapping/correspondence of the mathematical expression and code.

int Fib(int i)

{

if (i < 1) return 0;

if (i == 1) return 1;

return Fib(i-1) + Fib(i-2);

}

Fibonacci Numbers

• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2: Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Consider this function: what is its running time?
– g(N) = g(N-1) + g(N-2) + constant

g(N) ≥ Fibonacci(N) => g(N) = Ω(Fibonacci(N)) => g(N) = Ω(1.618N)

Also g(N) ≤ 2g(N-1)+constant => g(N) ≤ c2N => g(N) = O(2N)

=> g(N) is exponential

– We cannot compute Fibonacci(40) in a reasonable amount of time
(with this implementation).

– See how many times this function is executed.

– Draw the tree

41

int Fib(int i)

{

if (i < 1) return 0;

if (i == 1) return 1;

return Fib(i-1) + Fib(i-2);

}

Fibonacci Numbers
• Fibonacci(0) = 0

• Fibonacci(1) = 1

• If N >= 2: Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
0 1 2 3 4 5 6 7 8 9 10 11

42

Recursive ,exponential time:

int Fib(int i) {

if (i < 1) return 0;

if (i == 1) return 1;

return Fib(i-1) + Fib(i-2);

}

Bottom-up ,iterative, linear time:

int Fib_iter (int i) {

int F[i+1];

F[0] = 0; F[1] = 1;

int k;

for (k = 2; k <= i; k++)

F[k] = F[k-1] + F[k-2];

return F[i];

}

Notice the mapping/correspondence of the mathematical expression and code.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F

Applied scenario
• F(N) = F(N-1)+F(N-2), F(0) = 0, F(1) = 1,

• Consider a webserver where clients can ask what the value of a
certain Fibonacci number, F(N) is, and the server answers it.

How would you do that? (the back end, not the front end)

(Assume a uniform distribution of F(N) requests over time most F(N) will be asked.)

• Constraints:

– Each loop iteration or function call costs you 1cent.

– Each loop iteration or function call costs the client 0.001seconds wait time

– Memory is cheap

• How would you charge for the service? (flat fee/function calls/loop

iterations?)

• Think of some scenarios of requests that you could get. Think of it
with focus on:
– “good sequence of requests”

– “bad sequence of requests”

– Is it clear what good and bad refer to here?
43

Fibonacci Numbers
• Fibonacci(0) = 0 , Fibonacci(1) = 1

• If N >= 2: Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

• Alternative: remember values we have already computed.

• Draw the new recursion tree and discuss time complexity.

44

exponential :

int Fib(int i) {

if (i < 1) return 0;

if (i == 1) return 1;

return Fib(i-1) + Fib(i-2);

}

memoized :

int Fib_mem_wrap(int i) {

int sol[i+1];

if (i<=1) return i;

sol[0] = 0; sol[1] = 1;

for(int k=2; k<=i; k++) sol[k]=-1;

Fib_mem(i,sol);

return sol[i];

}

int Fib_mem (int i, int[] sol) {

if (sol[i]!=-1) return sol[i];

int res = Fib_mem(i-1, sol) + Fib_mem(i-2, sol);

sol[i] = res;

return res;

}

Fibonacci and DP

• Computing the Fibonacci number is a DP problem.

• It is a counting problem (not an optimization one).

• We can make up an ‘applied’ problem for which the DP solution
function is the Fibonacci function. Consider: A child can climb stairs one
step at a time or two steps at a time (but he cannot do 3 or more steps
at a time). How many different ways can they climb? E.g. to climb 4
stairs you have 5 ways: {1,1,1,1}, {2,1,1}, {1,2,1}, {1,1,2}, {2,2}

45

2D Matrix Traversal

P1. All possible ways to traverse a 2D matrix.
– Start from top left corner and reach bottom right corner.

– You can only move: 1 step to the right or one step down at a time. (No
diagonal moves).

– Variation: Allow to move in the diagonal direction as well.

– Variation: Add obstacles (cannot travel through certain cells).

P2. Add fish of various gains. Take path that gives the most gain.
– Variation: Add obstacles.

46

Other DP Problems
• Stair climbing:

– A child has to climb N stairs. She can jump over 1, 2 or 3 steps at a time. How
many different way are there to climb the N stairs?

– E.g. N=4 there are 6 ways:
• {1,1,1,1},

• {1,1,2},

• {1,2,1},

• {2,1,1},

• {1,3},

• {3,1}

• Make amount with smallest number of coins

• Matrix with gain

• House robber

• Many more on leetcode.
47

Variations of the Knapsack Problem

48

Fractional:
For each item can take the
whole quantity, or a fraction
of the quantity.

flour soda

Unbounded:
Have unlimited number of each object.
Can pick any object, any number of times.
(Same as the stair climbing with gain.)

Bounded:
Have a limited number of each object.
Can pick object i, at most xi times.

0-1 (special case of Bounded):
Have only one of each object.
Can pick either pick object i, or
not pick it.
This is on the web.

All versions have:

N number of different types
of objects

W the maximum capacity (kg)

v1, v2, …,vN Value for each object. ($$)

w1, w1,
…, wN,

Weight of each object. (kg)

The bounded version will have the amounts:
c1,c2,…, cN of each item.

Application of the Knapsack problem

• https://en.wikipedia.org/wiki/Knapsack_problem

One early application of knapsack algorithms was in the construction and scoring of tests in which the test-takers
have a choice as to which questions they answer. For small examples, it is a fairly simple process to provide the test-
takers with such a choice. For example, if an exam contains 12 questions each worth 10 points, the test-taker need
only answer 10 questions to achieve a maximum possible score of 100 points. However, on tests with a
heterogeneous distribution of point values, it is more difficult to provide choices. Feuerman and Weiss proposed a
system in which students are given a heterogeneous test with a total of 125 possible points. The students are asked
to answer all of the questions to the best of their abilities. Of the possible subsets of problems whose total point
values add up to 100, a knapsack algorithm would determine which subset gives each student the highest possible
score

49

https://en.wikipedia.org/wiki/Knapsack_problem

Worksheet: 0-1 Knapsack Example 1

50

0 1 2 3 4 5 6 7 8

No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

What is a smaller problem than this? What affects pb size(s)?

What problem is trivial? (think 0)

Think of an optimal solution.
• can you see a last step/choice? (can you see choices?)

• Or can you see a place where it breaks into subproblems?
• Here you may redefine what a problem looks like

• Something that allows an ordering of subproblems or
writing one solution in terms of solutions to smaller pbs.

Table? Array?

Examples:
max capacity: W = 8
pick: A -> value_______, weight: _______ , fits? Y/N

pick: A,C -> value_______, weight: _______ , fits? Y/N

pick: A,B,D -> value_______, weight: _______ , fits? Y/N

pick: A,B,C,D -> value_______, weight: _______ , fits? Y/N

Best value was ______
Did we try all possible combinations?
Are we certain there was no better one?

Max capacity: W=8

item Weight
(Kg)

Value
($)

A 4 5

B 3 4

C 2 3

D 1 2

Worksheet: 0-1 Knapsack Example 1

51

𝑠𝑜𝑙 0 [k] = 0, ∀𝑘
𝑠𝑜𝑙 i][0 = 0, ∀𝑖

𝑠𝑜𝑙 𝑖 [𝑘] =
𝑠𝑜𝑙 𝑖 − 1][𝑘 𝑖𝑓 𝑘 < 𝑤 𝑖

max 𝑠𝑜𝑙 𝑖 − 1][𝑘 , 𝑣 𝑖 + 𝑠𝑜𝑙 𝑖 − 1][𝑘 − 𝑤 𝑖 𝑖𝑓 𝑘 ≥ 𝑤 𝑖

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

0 1 2 3 4 5 6 7 8

No item
, kg, $

A, 4, 5

B, 3, 4

C, 2, 3

D, 1, 2

0

1

2

3

4

Write the formula for the solution function:

Max capacity: W=8

item weight Value

A 4 5

B 3 4

C 2 3

D 1 2

52

10

9

86

8

7 7

65

5044

1 3

00 2

0 1

2

Function call tree for the memoized
version

Round nodes – internal nodes. Require recursive calls.
Square nodes – leaves, show calls that return without
any new recursive calls.

Yes,
use job 10

No, do not use job 10

j

j-1pj

Yes,
use job j

No, do not use job j

To estimate the number of method calls note that every problem
size is an internal node only once and that every node has exactly
0 or 2 children. A property of such trees states that the number
of leaves is one more than the number of internal nodes => there
are at most (1+2N) calls. Here: N = 10 jobs to schedule.

Job j p(j)

0 -1

1 0

2 0

3 2

4 1

5 4

6 0

7 5

8 7

9 6

10 8

	Dynamic Programming
	Slide 1
	Slide 2: Steps for iterative (bottom up) solution

	Knapsack
	Slide 3
	Slide 4: Brute force approach
	Slide 5: Developing the solution
	Slide 6: Worksheet: 0-1 Knapsack Example 1
	Slide 7: Worksheet: 0-1 Knapsack Example 1
	Slide 8: Worksheet: 0-1 Knapsack Example 1
	Slide 9: Worksheet: 0-1 Knapsack Example 1
	Slide 10: Worksheet: 0-1 Knapsack Example 1
	Slide 11: Worksheet: 0-1 Knapsack Example 1 - Answers
	Slide 12: Worksheet: 0-1 Knapsack Example 1 - Backtrace
	Slide 13: Redo this problem with order: A,B,D,C
	Slide 14: Worksheet: 0-1 Knapsack Example 2
	Slide 15: Answer: 0-1 Knapsack –Example 2
	Slide 16: Iterative Solution for 0-1 Knapsack
	Slide 17: Improving memory usage: Θ(W)
	Slide 18: Hint for DP problems

	Job Scheduling
	Slide 19: Weighted Interval Scheduling (Job Scheduling)
	Slide 20: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 21: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 22: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 23: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Another example
	Slide 30: Recovering the Solution
	Slide 31: Bottom-up (BEST)
	Slide 32: Job Scheduling – Brute Force Solution
	Slide 33: Job Scheduling – Brute Force Solution
	Slide 34: Recursive (inefficient)
	Slide 35: Memoization (Recursion combined with saving)
	Slide 36: Function call tree for the memoized version

	Fibonacci numbers
	Slide 37: Fibonacci Numbers
	Slide 38: Fibonacci Numbers
	Slide 39: Fibonacci Numbers
	Slide 40: Fibonacci Numbers
	Slide 41: Fibonacci Numbers
	Slide 42: Fibonacci Numbers
	Slide 43: Applied scenario
	Slide 44: Fibonacci Numbers
	Slide 45: Fibonacci and DP

	More DP Problems
	Slide 46: 2D Matrix Traversal
	Slide 47: Other DP Problems

	Removed
	Slide 48: Variations of the Knapsack Problem
	Slide 49: Application of the Knapsack problem
	Slide 50: Worksheet: 0-1 Knapsack Example 1
	Slide 51: Worksheet: 0-1 Knapsack Example 1
	Slide 52: Function call tree for the memoized version

