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Approaches for solving DP Problems

Greedy
- typically not  optimal 
solution (for DP-type 
problems)

- Build solution 
- Use a criterion for picking
- Commit to a choice and 
do not look back

Brute Force
- Optimal solution
- Produce all possible combinations, 
[check if valid], and keep the best. 
- Time: exponential
- Space: depends on 
implementation
- It may be hard to generate all 
possible combinations

DP
- Optimal solution
- Write math function, sol, that
captures the dependency of solution 
to current pb on solutions to smaller 
problems 
- Can be implemented in any of the 
following: iterative, memoized, 
recursive

Iterative (bottom-up) - BEST
- Optimal solution
- sol is an array (1D or 2D). Size:  N+1
- Fill in sol from 0 to N
- Time: polynomial (or pseudo-
polynomial for some problems)
- Space: polynomial (or pseudo-
polynomial 
- To recover the choices that gave the 
optimal answer, must backtrace => 
must keep picked array (1D or 2D).

Improve space usage
- Improves the iterative solution
- Saves space
- If used, cannot recover the choices 
(gives the optimal value, but not the 
choices)

Memoized
- Optimal solution
- Combines recursion and 
usage of sol array.
- sol is an array (1D or 2D)
- Fill in sol from 0 to n
- Time: same as iterative 
version (typically)
- Space: same as iterative 
version (typically) + space for 
frame stack. (Frame stack 
depth is typically smaller 
than the size of the sol array)

Recursive
- Optimal solution
- Time: exponential 
(typically)  =>
- DO NOT USE
- Space: depends on 
implementation (code). E.g. 
store all combinations, or 
generate, evaluate on the fly 
and keep best seen so far.
- Easy to code given math 
function

DP can solve:
- some type of counting problems (e.g. stair climbing) 
- some type of optimization problems (e.g. Knapsack)
- some type of recursively defined pbs (e.g. Fibonacci) 

SOME DP solutions have pseudo polynomial time



Dynamic Programming (DP) - CLRS
• Dynamic programming (DP) applies when a problem has 

both of these properties:
1. Optimal substructure: “optimal solutions to a problem 

incorporate optimal solutions to related subproblems, which we 
may solve independently”.

2. Overlapping subproblems: “a recursive algorithm revisits the 
same problem repeatedly”.

• Dynamic programming is typically used to:
• Solve optimization problems that have the above properties.

• Solve counting problems –e.g. Stair Climbing or Matrix Traversal.

• Speed up existing recursive implementations of problems that 
have overlapping subproblems (property 2) – e.g. Fibonacci.

• Compare dynamic programming with divide and conquer.
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Iterative or Bottom-Up
Dynamic Programming

• Main type of solution for DP problems

• We can define the problems size and solve problems from size 0 
going up to the size we need.

• Iterative – because it uses a loop

• Bottom-up because you solve problems from the bottom (the 
smallest problem size) up to the original problem size. 
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Bottom-Up vs. Top Down

• There are two versions of dynamic programming.
• Bottom-up.

• Top-down (or memoization).

• Bottom-up: 
• Iterative, solves problems in sequence, from smaller to bigger.

• Top-down: 
• Recursive, start from the larger problem, solve smaller problems as needed.

• For any problem that we solve, store the solution, so we never have to compute the same 
solution twice.

• This approach is also called memoization.
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Top-Down Dynamic Programming
( Memoization )

• Maintain an array/table where solutions to problems 
can be saved.

• To solve a problem P:
• See if the solution has already been stored in the array.

• If yes, return the solution.

• Else:
• Issue recursive calls to solve whatever smaller problems we need 

to solve.

• Using those solutions obtain the solution to problem P.

• Store the solution in the solutions array.

• Return the solution.
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Steps for iterative (bottom up) solution 

1. Identify trivial problems 
1. typically where the size is 0

2. Look at the last step/choice in an optimal solution:
1. Assuming an optimal solution, what is the last action in 

completing it?

2. Are there more than one options for that last action?

3. If you consider each action, what is the smaller problem 
that you would combine with that last action?

1. Assume that you have the optimal answer to that smaller problem.

4. Generate all these solutions

5. Compute the value (gain or cost) for each of these 
solutions. 

6. Keep the optimal one (max or min based on problem)

3. Make a 1D or 2D array and start feeling in answers 
from smallest to largest problems.   
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Other types of solutions:
1. Brute force solution 
2. Recursive solution (most 

likely exponential and 
inefficient)

3. Memoized solution


