
Matrix Multiplication 
 

(Dynamic Programming) 



Matrix Multiplication: Review 

• Suppose that A1 is of size S1 x S2, and A2 is of 
size S2 x S3. 

• What is the time complexity of computing A1 * 
A2? 

• What is the size of the result?  
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Matrix Multiplication: Review 

• Suppose that A1 is of size S1 x S2, and A2 is of size 
S2 x S3. 

• What is the time complexity of computing A1 * 
A2? 

• What is the size of the result? S1 x S3. 

• Each number in the result is computed in O(S2) 
time by: 
– multiplying S2 pairs of numbers. 

– adding S2 numbers. 

• Overall time complexity: O(S1 * S2 * S3). 
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Optimal Ordering for Matrix 
Multiplication 

• Suppose that we need to do a sequence of 
matrix multiplications: 

– result = A1 * A2 * A3 * ... * AK 

• The number of columns for Ai must equal the 
number of rows for Ai+1. 

• What is the time complexity for performing 
this sequence of multiplications? 
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Optimal Ordering for Matrix 
Multiplication 

• Suppose that we need to do a sequence of 
matrix multiplications: 
– result = A1 * A2 * A3 * ... * AK 

• The number of columns for Ai must equal the 
number of rows for Ai+1. 

• What is the time complexity for performing 
this sequence of multiplications? 

• The answer is: it depends on the order in 
which we perform the multiplications. 
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An Example 
• Suppose:  

– A1 is17x2. 

– A2 is 2x35. 

– A3 is 35x4. 

• (A1 * A2) * A3: 
 
 
 

• A1 * (A2 * A3): 
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An Example 
• Suppose:  

– A1 is17x2. 

– A2 is 2x35. 

– A3 is 35x4. 

• (A1 * A2) * A3: 
– 17*2*35 = 1190 multiplications and additions to compute A1 * A2. 

– 17*35*4 = 2380 multiplications and additions to compute multiplying 
the result of (A1 * A2) with A3. 

– Total: 3570 multiplications and additions. 

• A1 * (A2 * A3): 
– 2*35*4 = 280 multiplications and additions to compute A2 * A3. 

– 17*2*4 = 136 multiplications and additions to compute multiplying A1 
with the result of (A2 * A3). 

– Total: 416 multiplications and additions. 
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Adaptation to Dynamic Programming 

• Suppose that we need to do a sequence of matrix 
multiplications: 
– result = A1 * A2 * A3 * ... * AK 

• To figure out if and how we can use dynamic programming, 
we must address the standard two questions we always need 
to address for dynamic programming: 

1. Can we define a set of smaller problems, such that the 
solutions to those problems make it easy to solve the original 
problem?  

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 
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Defining Smaller Problems 
1. Can we define a set of smaller problems, whose solutions make it 

easy to solve the original problem?  
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK 

• Yes! Suppose that, for every i between 1 and K-1 we know: 
– The best order (and best cost) for multiplying matrices A1, ..., Ai. 

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK. 

• Then, for every such i, we obtain a possible solution for our original 
problem: 
– Multiply matrices A1, ..., Ai in the best order. Let C1 be the cost of that. 

– Multiply matrices Ai+1, ..., AK in the best order. Let C2 be the cost of that. 

– Compute (A1 * ... * Ai) * (Ai+1 * ... * AK). Let C3 be the cost of that. 

• C3 = rows of (A1 * ... * Ai) * cols of (A1 * ... * Ai) * cols of (Ai+1 * 
... * AK). 
     = rows of A1 * cols of Ai * cols of AK 

– Total cost of this solution = C1 + C2 + C3. 
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Defining Smaller Problems 
1. Can we define a set of smaller problems, whose solutions make 

it easy to solve the original problem?  
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK 

• Yes! Suppose that, for every i between 1 and K-1 we know: 
– The best order (and best cost) for multiplying matrices A1, ..., Ai. 

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK. 

• Then, for every such i, we obtain a possible solution. 

• We just need to compute the cost of each of those solutions, 
and choose the smallest cost. 

• Next question: 

2. Can we arrange those smaller problems in a sequence of 
reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 
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Defining Smaller Problems 
2. Can we arrange those smaller problems in a sequence of 

reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 

• To compute answer for A1 * A2 * A3 * ... * AK : 
For i = 1, …, K-1, we had to consider solutions for: 

– A1, ..., Ai. 

– Ai+1, ..., AK. 

• So, what is the set of all problems we must solve? 
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Defining Smaller Problems 
2. Can we arrange those smaller problems in a sequence of 

reasonable size, so that each problem in that sequence only 
depends on problems that come earlier in the sequence? 

• To compute answer for A1 * A2 * A3 * ... * AK : 
For i = 1, …, K-1, we had to consider solutions for: 
– A1, ..., Ai. 

– Ai+1, ..., AK. 

• So, what is the set of all problems we must solve? 

• For M = 1, ..., K. 
– For N = 1, ..., M. 

• Compute the best ordering for AN * ... * AM. 

• What this the number of problems we need to solve? Is the size 
reasonable? 
– We must solve Θ(K2) problems. We consider this a reasonable number. 
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Defining Smaller Problems 
• The set of all problems we must solve: 

• For M = 1, ..., K. 
– For N = 1, ..., M. 

• Compute the best ordering for AN * ... * AM. 

• What is the order in which we must solve these problems? 
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Defining Smaller Problems 
• The set of all problems we must solve, in the correct order: 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• N must go from M to 1, NOT the other way around. 

• Why? Because, given M, the larger the N is, the smaller the 
problem is of computing the best ordering for AN * ... * AM. 
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Solving These Problems 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• What are the base cases? 

• N = M. 
– costs[N][M] = 0. 

• N = M - 1. 
– costs[N][M] = rows(AN) * cols(AN) * cols(AM). 

• Solution for the recursive case: 
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Solving These Problems 

• For M = 1, ..., K. 
– For N = M, ..., 1. 

• Compute the best ordering for AN * ... * AM. 

• Solution for the recursive case: 
 

• minimum_cost = 0 

• For R = N, ..., M-1: 
– cost1 = costs[N][R] 

– cost2 = costs[R+1][M] 

– cost3 = rows(AN) * cols(AR) * cols(AM) 

– cost = cost1 + cost2 + cost3 

– if (cost < minimum_cost) minimum_cost = cost 

• costs[N][M] = minimum_cost 
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