Matrix Multiplication

(Dynamic Programming)

Matrix Multiplication: Review

- Suppose that A₁ is of size S₁ x S₂, and A₂ is of size S₂ x S₃.
- What is the time complexity of computing $A_1 * A_2$?
- What is the size of the result?

Matrix Multiplication: Review

- Suppose that A₁ is of size S₁ x S₂, and A₂ is of size S₂ x S₃.
- What is the time complexity of computing $A_1 * A_2$?
- What is the size of the result? $S_1 \times S_3$.
- Each number in the result is computed in O(S₂) time by:
 - multiplying S_2 pairs of numbers.
 - adding S₂ numbers.
- Overall time complexity: O(S₁ * S₂ * S₃).

Optimal Ordering for Matrix Multiplication

Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- The number of columns for A_i must equal the number of rows for A_{i+1}.
- What is the time complexity for performing this sequence of multiplications?

Optimal Ordering for Matrix Multiplication

Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- The number of columns for A_i must equal the number of rows for A_{i+1} .
- What is the time complexity for performing this sequence of multiplications?
- The answer is: it depends on the order in which we perform the multiplications.

An Example

- Suppose:
 - $A_1 is 17x2.$
 - A_2 is 2x35.
 - A_3 is 35x4.
- (A₁ * A₂) * A₃:

• A₁ * (A₂ * A₃):

An Example

• Suppose:

- $A_1 is 17x2.$
- A_2 is 2x35.
- A_3 is 35x4.
- $(A_1 * A_2) * A_3$:
 - 17*2*35 = 1190 multiplications and additions to compute $A_1 * A_2$.
 - 17*35*4 = 2380 multiplications and additions to compute multiplying the result of (A₁ * A₂) with A₃.
 - Total: 3570 multiplications and additions.
- A₁ * (A₂ * A₃):
 - 2*35*4 = 280 multiplications and additions to compute $A_2 * A_3$.
 - 17*2*4 = 136 multiplications and additions to compute multiplying A₁ with the result of (A₂ * A₃).
 - Total: 416 multiplications and additions.

Adaptation to Dynamic Programming

• Suppose that we need to do a sequence of matrix multiplications:

- result = $A_1 * A_2 * A_3 * ... * A_K$

- To figure out if and how we can use dynamic programming, we must address the standard two questions we always need to address for dynamic programming:
- Can we define a set of smaller problems, such that the solutions to those problems make it easy to solve the original problem?
- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?

1. Can we define a set of smaller problems, whose solutions make it easy to solve the original problem?

- Original problem: optimal ordering for $A_1 * A_2 * A_3 * ... * A_K$

- Yes! Suppose that, for every i between 1 and K-1 we know:
 - The best order (and best cost) for multiplying matrices $A_1, ..., A_i$.
 - The best order (and best cost) for multiplying matrices A_{i+1} , ..., A_{K} .
- Then, for every such i, we obtain a possible solution for our original problem:
 - Multiply matrices $A_1, ..., A_i$ in the best order. Let C_1 be the cost of that.
 - Multiply matrices A_{i+1} , ..., A_{K} in the best order. Let C_{2} be the cost of that.
 - Compute $(A_1 * ... * A_i) * (A_{i+1} * ... * A_K)$. Let C_3 be the cost of that.
 - C₃ = rows of (A₁ * ... * A_i) * cols of (A₁ * ... * A_i) * cols of (A_{i+1} * ... * A_k).
 - = rows of $A_1 * cols of A_i * cols of A_K$
 - Total cost of this solution = $C_1 + C_2 + C_3$.

- 1. Can we define a set of smaller problems, whose solutions make it easy to solve the original problem?
 - Original problem: optimal ordering for $A_1 * A_2 * A_3 * \dots * A_K$
- Yes! Suppose that, for every i between 1 and K-1 we know:
 - The best order (and best cost) for multiplying matrices $A_1, ..., A_i$.
 - The best order (and best cost) for multiplying matrices A_{i+1} , ..., A_{K} .
- Then, for every such i, we obtain a possible solution.
- We just need to compute the cost of each of those solutions, and choose the smallest cost.
- Next question:
- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?

- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?
- To compute answer for A₁ * A₂ * A₃ * ... * A_K:
 For i = 1, ..., K-1, we had to consider solutions for:
 A₁, ..., A_i.
 A_{i+1}, ..., A_K.
- So, what is the set of all problems we must solve?

- Can we arrange those smaller problems in a sequence <u>of</u> <u>reasonable size</u>, so that each problem in that sequence <u>only</u> <u>depends on problems that come earlier</u> in the sequence?
- To compute answer for $A_1 * A_2 * A_3 * ... * A_k$: For i = 1, ..., K-1, we had to consider solutions for:
 - A₁, ..., A_i.
 - A_{i+1}, ..., A_K.
- So, what is the set of all problems we must solve?
- For M = 1, ..., K.
 - For N = 1, ..., M.
 - Compute the best ordering for $A_N * ... * A_M$.
- What this the number of problems we need to solve? Is the size reasonable?
 - We must solve $\Theta(K^2)$ problems. We consider this a reasonable number.

- The set of all problems we must solve:
- For M = 1, ..., K.
 - For N = 1, ..., M.
 - Compute the best ordering for $A_N * ... * A_M$.
- What is the order in which we must solve these problems?

- The set of all problems we must solve, in the correct order:
- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- N must go from M to 1, NOT the other way around.
- Why? Because, given M, the larger the N is, the smaller the problem is of computing the best ordering for $A_N * ... * A_M$.

Solving These Problems

- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- What are the base cases?
- N = M.
 - costs[N][M] = 0.
- N = M 1.
 - $costs[N][M] = rows(A_N) * cols(A_N) * cols(A_M)$.
- Solution for the recursive case:

Solving These Problems

- For M = 1, ..., K.
 - For N = M, ..., 1.
 - Compute the best ordering for $A_N * ... * A_M$.
- Solution for the recursive case:
- minimum_cost = 0
- For R = N, ..., M-1:
 - cost1 = costs[N][R]
 - $\cos t2 = \cos ts[R+1][M]$
 - cost3 = rows(A_N) * cols(A_R) * cols(A_M)
 - $\cos t = \cos t1 + \cos t2 + \cos t3$
 - if (cost < minimum_cost) minimum_cost = cost</pre>
- costs[N][M] = minimum_cost