
Matrix Multiplication

(Dynamic Programming)

Matrix Multiplication: Review

• Suppose that A1 is of size S1 x S2, and A2 is of
size S2 x S3.

• What is the time complexity of computing A1 *
A2?

• What is the size of the result?

2

Matrix Multiplication: Review

• Suppose that A1 is of size S1 x S2, and A2 is of size
S2 x S3.

• What is the time complexity of computing A1 *
A2?

• What is the size of the result? S1 x S3.

• Each number in the result is computed in O(S2)
time by:
– multiplying S2 pairs of numbers.

– adding S2 numbers.

• Overall time complexity: O(S1 * S2 * S3).

3

Optimal Ordering for Matrix
Multiplication

• Suppose that we need to do a sequence of
matrix multiplications:

– result = A1 * A2 * A3 * ... * AK

• The number of columns for Ai must equal the
number of rows for Ai+1.

• What is the time complexity for performing
this sequence of multiplications?

4

Optimal Ordering for Matrix
Multiplication

• Suppose that we need to do a sequence of
matrix multiplications:
– result = A1 * A2 * A3 * ... * AK

• The number of columns for Ai must equal the
number of rows for Ai+1.

• What is the time complexity for performing
this sequence of multiplications?

• The answer is: it depends on the order in
which we perform the multiplications.

5

An Example
• Suppose:

– A1 is17x2.

– A2 is 2x35.

– A3 is 35x4.

• (A1 * A2) * A3:

• A1 * (A2 * A3):

6

An Example
• Suppose:

– A1 is17x2.

– A2 is 2x35.

– A3 is 35x4.

• (A1 * A2) * A3:
– 17*2*35 = 1190 multiplications and additions to compute A1 * A2.

– 17*35*4 = 2380 multiplications and additions to compute multiplying
the result of (A1 * A2) with A3.

– Total: 3570 multiplications and additions.

• A1 * (A2 * A3):
– 2*35*4 = 280 multiplications and additions to compute A2 * A3.

– 17*2*4 = 136 multiplications and additions to compute multiplying A1
with the result of (A2 * A3).

– Total: 416 multiplications and additions.

7

Adaptation to Dynamic Programming

• Suppose that we need to do a sequence of matrix
multiplications:
– result = A1 * A2 * A3 * ... * AK

• To figure out if and how we can use dynamic programming,
we must address the standard two questions we always need
to address for dynamic programming:

1. Can we define a set of smaller problems, such that the
solutions to those problems make it easy to solve the original
problem?

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

8

Defining Smaller Problems
1. Can we define a set of smaller problems, whose solutions make it

easy to solve the original problem?
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK

• Yes! Suppose that, for every i between 1 and K-1 we know:
– The best order (and best cost) for multiplying matrices A1, ..., Ai.

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK.

• Then, for every such i, we obtain a possible solution for our original
problem:
– Multiply matrices A1, ..., Ai in the best order. Let C1 be the cost of that.

– Multiply matrices Ai+1, ..., AK in the best order. Let C2 be the cost of that.

– Compute (A1 * ... * Ai) * (Ai+1 * ... * AK). Let C3 be the cost of that.

• C3 = rows of (A1 * ... * Ai) * cols of (A1 * ... * Ai) * cols of (Ai+1 *
... * AK).
 = rows of A1 * cols of Ai * cols of AK

– Total cost of this solution = C1 + C2 + C3.

9

Defining Smaller Problems
1. Can we define a set of smaller problems, whose solutions make

it easy to solve the original problem?
– Original problem: optimal ordering for A1 * A2 * A3 * ... * AK

• Yes! Suppose that, for every i between 1 and K-1 we know:
– The best order (and best cost) for multiplying matrices A1, ..., Ai.

– The best order (and best cost) for multiplying matrices Ai+1, ..., AK.

• Then, for every such i, we obtain a possible solution.

• We just need to compute the cost of each of those solutions,
and choose the smallest cost.

• Next question:

2. Can we arrange those smaller problems in a sequence of
reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

10

Defining Smaller Problems
2. Can we arrange those smaller problems in a sequence of

reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

• To compute answer for A1 * A2 * A3 * ... * AK :
For i = 1, …, K-1, we had to consider solutions for:

– A1, ..., Ai.

– Ai+1, ..., AK.

• So, what is the set of all problems we must solve?

11

Defining Smaller Problems
2. Can we arrange those smaller problems in a sequence of

reasonable size, so that each problem in that sequence only
depends on problems that come earlier in the sequence?

• To compute answer for A1 * A2 * A3 * ... * AK :
For i = 1, …, K-1, we had to consider solutions for:
– A1, ..., Ai.

– Ai+1, ..., AK.

• So, what is the set of all problems we must solve?

• For M = 1, ..., K.
– For N = 1, ..., M.

• Compute the best ordering for AN * ... * AM.

• What this the number of problems we need to solve? Is the size
reasonable?
– We must solve Θ(K2) problems. We consider this a reasonable number.

12

Defining Smaller Problems
• The set of all problems we must solve:

• For M = 1, ..., K.
– For N = 1, ..., M.

• Compute the best ordering for AN * ... * AM.

• What is the order in which we must solve these problems?

13

Defining Smaller Problems
• The set of all problems we must solve, in the correct order:

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• N must go from M to 1, NOT the other way around.

• Why? Because, given M, the larger the N is, the smaller the
problem is of computing the best ordering for AN * ... * AM.

14

Solving These Problems

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• What are the base cases?

• N = M.
– costs[N][M] = 0.

• N = M - 1.
– costs[N][M] = rows(AN) * cols(AN) * cols(AM).

• Solution for the recursive case:

15

Solving These Problems

• For M = 1, ..., K.
– For N = M, ..., 1.

• Compute the best ordering for AN * ... * AM.

• Solution for the recursive case:

• minimum_cost = 0

• For R = N, ..., M-1:
– cost1 = costs[N][R]

– cost2 = costs[R+1][M]

– cost3 = rows(AN) * cols(AR) * cols(AM)

– cost = cost1 + cost2 + cost3

– if (cost < minimum_cost) minimum_cost = cost

• costs[N][M] = minimum_cost

16

