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Optimization Problems

• Knapsack problem: 
– Thief in a store has a backpack. Can only steal as much as fits in his 

backpack. What objects should he pick to make the most money? Given 
data: W-knapsack capacity, N – number of different types of items; value 
and weight (vi,wi) of each item.

– Versions – see next page

• Job Scheduling (a.k.a. Interval Scheduling) 
– Given N jobs with (start_time, end_time, value) pick a set of jobs that do 

not overlap and give the most money.
• Variation: all jobs have the same value

• Hufmann coding 
– File compression: encode symbols in a text file s.t. the file has the 

smallest size possible.

• Graphs – Minimum Spanning Tree (MST-Prim’s Algorithm)

• Terminology: 
– Problem - general
– Variations of a problem – additional specification to the general problem 
– Instance of a problem – specific data (what I use in examples are 

instances of the problem being discussed problem) 2



Greedy Method for Optimization Problems
• Optimization problem – multiple possible solutions, pick the one that gives the 

most value (or lowest cost)
• Greedy: 

– Method:
• Pick a criterion that reflects the measure you are optimizing for (value or cost)

E.g. for Huffman minimize the storage (cost), for Knapsack maximize the money (value)
• take the action that is best now (out of the current options) according to your criterion 

(i.e. pick a local optimal). You commit to it, it may limit your future choices and cause 
you to not find the global optimum.

– It may cause you to miss the optimal solution
– You build the solution as you go. No need to back trace it.

• Examples:
– Knapsack

• Optimal answer for the easy (fractional) version using ratio, but not for the others.

– Interval scheduling
• Optimal answer for the easy (same value jobs) version (using job that finishes first) , but 

not for the others.

– Huffman codes 
• Optimal solution: pick the two smallest weight trees.
• Used for file compression. Prefix codes: no code is also a prefix of another code.
• Huffman tree to decode (the code for a character, x, takes you to the leaf with  x)
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Fractional 
For each item can take the 
whole quantity, or a fraction of 
the quantity.
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The Knapsack Problem

Image from Wikipedia

• A thief breaks into a store.
• The maximum total weight that he can carry is W.
• There are N types of items at the store. 
• Each type ti has a value vi and a weight wi.
• What is the maximum total value that he can carry out?
• What items should he pick to obtain this maximum value?

Unbounded 
(unlimited number of 
each object)
Can pick any object, 
any number of times.

Bounded 
(limited number of each object)
Can pick object i, at most ci times.
(Not covered in this class) 

Typical version: 
0/1
(only one of each object)

Can either pick object i, 
or not pick it.

All versions have:

N number of different types of objects

W the maximum capacity  (kg)

v1, v2, …,vN Value for each object.    ($$)

w1, w1, …,wN, Weight of each object.  (kg)

The only variation 
that Greedy can 
solve optimally

Variations we will discuss here:
0/1 non-fractional                    0/1 fractional
Unbounded non-fractional     Unbounded fractional

https://en.wikipedia.org/wiki/Knapsack_problem


All four versions example – NOT optimal
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W=21 (knapsack capacity is 21)

Item A B C D E

Value ($) 4 5 11 14 15

Weight (kg) 3 4 7 8 9

E (15$, 9kg)

D (14$)

E (15$) A (4$)

B (5$, 4kg)

C (11$, 7kg)

D (14$, 8kg)

E (15$, 9kg)

A (4$, 3kg)

0/1, NF
30

inf, NF
29

inf, F
33.75

0/1, F
32.5

C (11$)

B (5$) B (5$) B (5$)

C (11$) C (11$) Fraction of E ( 7kg*15$/9kg)

C (11$)
Fraction of 
B (2*5/4)A (4$, 3kg)

Price per kilogram = value/weight. 
E.g. for B we have 5$/4kg = 1.25$/kg . 
(Useful for the fractional version in calculating the 
money made from using a fraction of an item. See the 
examples for the fractional problems below.)

W=21 (i.e. the Knapsack capacity is 21)



Knapsack – Greedy solution

• What would a greedy thief do?
– Criterion: value/weight ratio

– Method:

• Sort in decreasing order of value/weight ratio. 

• Pick as many of the largest ratio as possible. After that, try to take as many of 
the next ratio as possible and so on.

– Does NOT give an optimal solution. See next page.

• Would any of the 4 variations be solved optimally using Greedy? 
(Prove or give counter-example)

– Yes. The fractional version.
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Worksheet (make copies)

7
W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)



0/1 Not Fractional, Ratio
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W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

D (1.75=14/8) E (1.67=15/9) A (1.3=4/3)

Total value = value(D) + value(E)  + value(A) =14 + 15 + 4 =33

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

We can only pick entire objects, must 
skip those that do not fit. We have only 
one of each object.



Unbounded Not Fractional, RATIO
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W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

D (1.75=14/8)

Total value = value(D) + value(D)  + value(A) =14 + 14 + 4 =32
(D was selected twice)

D (1.75=14/8)

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

A (1.3=4/3)

We can only pick entire objects, must 
skip those that do not fit. We have 
unlimited number of objects, thus we can 
pick as many of D as we can fit in.



Unbounded Fractional, RATIO - Solution
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W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

D (1.75=14/8) D (1.75=14/8) Fraction of D (1.75=14/8)

Total value = value(D) + value(D)  + remining_weight*(value(D)/weight(D)) =
= capacity_kg* ($/kg for D) = 21kg*(14$/8kg) =  36.75$ 

We can pick a fraction of an object, must 
skip those that do not fit. We have 
unlimited number of objects, thus we can 
pick only D (entire objects and a fraction).

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)



0/1 Fractional, RATIO - Solution
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W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

Total value = value(D) + value(E)  + remining_weight*(value(C)/weight(C)) =
= 14$ + 15$ +  4kg* (11$/7kg)=  35.28$ 

D (1.75=14/8)

E (1.67=15/9) Fraction of C 

We can pick a fraction of an object, must 
skip those that do not fit. We have only 
ONE of each object. 



All four versions, Ratio
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W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio:  D,   E,   C,   A,  B
1.75,  1.67, 1.57,   1.3,   1.25

D (1.75=14/8) E (1.67=15/9) Fraction of C 

D (1.75=14/8) D (1.75=14/8) Fraction of D

D (1.75=14/8) D (1.75=14/8) A (1.3=4/3)

D (1.75=14/8) E (1.67=15/9) A (1.3=4/3)

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

0/1, NF
33

inf, NF
32

inf, F
36.75

0/1, F
35.28



Greedy for Knapsack – Criterion: Ratio
Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3= 
1.3

5/4=
1.25

11/7
=1.57

14/8
=1.75

15/9
=1.67

Reordered decreasing by ratio:  D,  E,  C,  A,  B

13

Picked D D A

Remaining 
weight

13
(=21-8)

5
(=13-8)

2
(=5-3)

Value:   14+14+4 = 32

Picked D D Fraction of 

of D

Remaining 
weight

13
(=21-8)

5
(=13-8)

0
(=5-5)

Value:   14+14+5*(14/8) = 36.75

Unbounded, not fractional Unbounded, fractional

Picked D E A

Remaining 
weight

13
(=21-8)

4
(=13-9)

1
(=4-3)

Value:   14+15+4 = 33

0/1,  not fractional

Picked D E Fraction of 

C

Remaining 
weight

13
(=21-8)

4
(=13-9)

0
(=4-4)

Value:   14+15+ 4*(11/7) = 35.28

0/1, fractional

W = 21  (Knapsack capacity: 21)

Best available item now: C, weight of C: 7
Remaining weight: 4
Want to use all remaining space with a 
fraction of D or C =>  Value calculation:
Remaining_weight*(value/kg)



All four versions, VALUE

14
W=21 (knapsack capacity is 21)

E (1.67=15/9) Fraction of C 

B (5$)

C (11$)

D (14$)

E (15$)

A (4$)

0/1
NF

inf
NF

inf
F

0/1
F

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Reordered decreasing by value:  E, D, C, B, A

E (15$) D (14$) B (5$)

E (15$) E (15$)
A (4$)

E (15$) E (15$) Fraction of E

D (14$)



Greedy for Knapsack – Criterion: Value
Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Reordered decreasing by value:  E, D, C, B, A

15

Picked E E A

Remaining 
weight

12
(=21-9)

3
(=12-9)

0
(=3-3)

Value:   15+15+4 = 34

Picked E E 1/3 of E

Remaining 
weight

12
(=21-9)

3
(=12-9)

0
=3-
(1/3)*9

Value:   15+15+(1/3)*15 = 35

Unbounded , not fractional Unbounded, fractional

Picked E D B

Remaining 
weight

12
(=21-9)

4
(=12-8)

0
(=4-4)

Value:   15+14+5 = 34

0/1 , not fractional

Picked E D 4/7 of C

Remaining 
weight

12
(=21-9)

4
(=12-8)

0
=4-
(4/7)*7

Value:   15+14+(4/7)*11 = 35.28

0/1, fractional

W = 21  (Knapsack capacity: 21)

Best item: E, weight of E: 9
Remaining weight: 3
Want to use all remaining space with a 
fraction of D or C =>  Value calculation:
Remaining_weight*(value/kg)



Greedy may NOT find the optimum 
solution for Unbounded and 0/1 Knapsack

- Proof by counter example

• Goal: construct an Unbounded Knapsack instance where Greedy 
(with the ratio) does not give the optimal answer.

• Intuition: We want Greedy to pick only one item, when in fact two 
other items can be picked and together give a higher value:

– Item A: 3kg,  $5 => total value 5

– Item B: 2kg (can fit 2), $3 => total value 6

– Knapsack max weight: 4

– !!! You must double-check that Greedy would pick item A => check 
the ratios: 5/3 > 3/2    (1.66 > 1.5).

• If item A had value  4, Greedy would also have picked B. 

• Same example can be modified to work for 0/1 Knapsack:

– Item A: 3kg, $5

– Item B: 2kg, $3

– Item C: 2kg, $3

16

Item A  ($5, 3kg)

Item B ($3, 2kg)

W=4, Greedy (Non-optimal)

W=4, DP (Optimal)

W=4, DP:

W=4, Greedy

Item A ($5, 3kg)

Item B ($3, 2kg)

Item C ($3, 2kg)



Weighted Interval Scheduling
(a.k.a. Job Scheduling)
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Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem - Version 1 - jobs with different values
Given n jobs where each job has a start time, finish time and 
value, (si,fi,vi) select a subset of them that do not overlap and 
give the largest total value.
• What would be a greedy criterion? ________________
• Greedy algorithm?  (Is it optimal?)

Problem - Version 2 - jobs with same value
• All jobs have the same value (e.g. $10). 

– The job value will be just a multiplication factor
– Only start and finish time, (si,fi), will affect the solution

• maximize number of non-overlapping jobs
• What would be a greedy criterion? ________________
• Greedy algorithm? (Is it optimal?)

Which of the 2 versions is harder? 
Greedy gives an optimal solution to one of them. Can 
you guess which one? 18

E.g.:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

E.g.:
(start, end)
(6,   8)
(2,   5)
(3, 11)
(5,   6)
(1,   4) 
(4,   7)



Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing: 
• Sort jobs in increasing order of their finish time (and 

give them an ID for easy reference). 

• Possible criteria:
– Ratio: value/duration

– Largest value

– Shortest duration

– Starts first

– Finishes last

– Finishes first

– Starts last

19

E.g.:
(start, end, value)
(6,   8,  $2)
(2,   5,  $6)
(3, 11,  $5)
(5,   6,  $3)
(1,   4,  $5) 
(4,   7,  $2)

After preprocessing:
JobId (start, end)
1  (1,   4,  $5 ) 
2  (2,   5,  $6 )
3  (5,   6,  $3 )
4  (4,   7,  $2 )
5  (6,   8,  $2 )
6  (3, 11,  $5 )



Class work – Applying Greedy
• Both problem version

• Criterion: job that finishes first

• algorithm, 
– Sort by finish time  - O(NlgN)

– Repeat as long as there are still jobs available - (Θ(N))
• Pick the one that finishes first, J,  and

• Remove the ones it overlaps with - Go though all remaining jobs 

• optimal or not (if not, can we build a counter 
example?)
– For VERSION 1 ( different values) – not optimal

– For VERSION 2 (same value) – Yes, optimal

20

Version 1:
After preprocessing:
JobId (start, end)
1  (1,   4,  $5 )  - picked
2  (2,   5,  $6 )
3  (5,   6,  $3 )-picked
4  (4,   7,  $2 )
5  (6,   8,  $2 ) - picked
6  (3, 11,  $5 ) X

Version 2
After preprocessing:
JobId (start, end)
1  (1,   4)  - picked
2  (2,   5)
3  (5,   6)-picked
4  (4,   7)
5  (6,   8) - picked
6  (3, 11) X



• Problem version: All jobs have the SAME value. => 
maximize number of jobs you can pick.

• Criteria that gives optimal solution:
– job that finishes first 

– job that starts last

– (See book for proof if interested – proof by 
contradiction, CLRS page 415)

• Criteria that gives non-optimal solution:
– Shortest duration

– Least overlaps

– Starts first

– Finishes last 21

Interval Scheduling Greedy Criteria

1 6 7 12

5 8



Summary and Counter Examples
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1 6 7 12

5 8

Example showing that Greedy with largest value 
does not give an optimal solution.

Greedy will pick the red job. Nothing else fits.
Better (optimal): the 2 blue jobs.

10$
9$ 9$

1 6 7 12

5 8

Example showing that Shortest duration 
Does not give an optimal solution.

Greedy will pick the red job. Nothing else fits.
Better (optimal): the 2 blue jobs.

Jobs with the same valueJobs with values

• With values ( job = (start, finish, value) ):

– Greedy solution – none optimal

– DP - optimal

• Without values (or same values)  ( job = (start, end) ):

– Greedy solution – Some optimal, some not (based on criterion used)
• (CLRS proof at page 418, proof of Theorem 16.1)

• Which of the two versions is more general? 

– Is one a special case (or special instance) of the other?

– If you have a program to solve problems of one type, can you easily use it to solve problems of the other type? 
Which type should the program solve (with value, or without value)?
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Huffman code



Huffman code
• Application: file compression 

• Example from CLRS:

– File with 100,000 characters.

– Characters: a,b,c,d,e,f

– Frequency in thousands (e.g. the frequency of b is 13000):

– Goal: binary encoding that requires less memory.

a b c d e f File size after 
encoding

Frequency
(thousands)

45 13 12 16 9 5 -

Fix-length
codeword

000 001 010 011 100 101

Variable-length 
codeword

0 101 100 111 1101 1100

24



Huffman codes

• Internal nodes contain the sum of probabilities of the leaves 
in that subtree.

Optimal prefix codeword tree
(Huffman tree) – optimal encoding

Fixed-length codeword tree

(Images from CLRS.)

Compute the number of bits needed for the whole file using each of these encodings.

2545,000*1 + 13,000 * 3 + 12,000*3 + 16,000*3 + 9,000 * 4 + 5,000 * 4
= 224,000

100,000 * 3 = 300,000

a->0
b->101
c->100
d->111
e->1101
f->1100

Number of bits in code



Building the Huffman Tree
1. Make ‘leaves’ with letters and their frequency and arrange them in increasing order of 

frequency.
2. Repeat until there is only one tree:

1. Create a new tree from the two leftmost trees (with the smallest frequencies) and 
2. Put it in its place (in increasing order of frequency).

3. Label left/right branches with 0/1
Encoding of char = path from root to leaf that has that char

Tree property:   Every internal node has two children

See book or lecture video for the step-by-step solution.
In exam or hw, you must use this method. Make sure that you always put the smallest child node to the left.

a b c d e f

Frequency
(thousands)

45 13 12 16 9 5

26



Glancing at implementation issues and options
• Good reference: https://www2.cs.duke.edu/csed/poop/huff/info/

• File Compression with Huffman coding - Practical Issues
– Given an encoded file, how will you know when it ended?

• Typically files are stored by the OS in sizes that are multiples of a specific value, so even 
though your actual file takes 121 bits, on disk 128 bits are written and all that will be read 
when you open the file. You need to know that after 121 you are done.

• a) encode length of useful data in the file or
• b)  need a new symbol to indicate end of file. Note that you must add this symbol (with 

count 1) to your set of distinct symbols used in building the Huffman tree, because you 
must be able to recognize it (decode it from bits into the symbol).

– Given an encoded file, how will you know how to decode it?
• The encoding tree is not standard, but it depends on the given file => 
• Must record some information to know how to decode the file along with the file (at the 

beginning) =>
– Store the Huffman tree (0- inner node, 1-leaf, after 1 read 8 bits and decode to 

symbol)
– Store enough info to regenerate the tree (e.g. char and frequency pairs).

• Build the tree efficiently
– Using a heap: Heaps are efficient (lgN) for finding min, 

removing min, inserting new item 
• With heap: O(NlgN)
• With sort and reinsert (like on paper): O(N2)

– Using 2 sorted queues (https://en.wikipedia.org/wiki/Huffman_coding)

27

Extra

Decoding 
info

Useful data 

File format

https://www2.cs.duke.edu/csed/poop/huff/info/
https://en.wikipedia.org/wiki/Huffman_coding


Greedy Algorithms
• Greedy algorithms do not always guarantee optimal solution. 

It depends on the problem.

• Difference between Greedy and Dynamic Programming:
– In DP typically you solve all the problems and then make your choice. 

You will compute two or more answers for the current problem (entire 
problem) and pick the best of those. 

– In greedy, you make the greedy choice and you are left with only one 
problem.

28

Problem/Greedy 
optimal or not

Greedy gives optimal solution Greedy does NOT give the 
optimal solution

Knapsack - 0/1 fractional, 
- unbounded fractional
Criterion: value/weight ratio

- 0/1 Not fractional
- Unbounded not fractional

Job Scheduling - All jobs have the SAME VALUE
Criterion: job that finishes first

- Jobs have different values

Hufmann Pick the two trees with smallest 
weight.

-


