
Greedy Algorithms
for Optimization Problems

Alexandra Stefan

13/19/2024

Optimization Problems

• Knapsack problem

• Job Scheduling (a.k.a. Weighted Interval Scheduling)

• Other problems – not covered here
– Huffman coding

• File compression: encode symbols in a text file s.t. the file has the smallest size possible.

– Graphs – Minimum Spanning Tree (MST-Prim’s Algorithm) – see later

• Terminology:
– Problem - general
– Variations of a problem – additional specification to the general problem
– Instance of a problem – specific data (what I use in examples are instances of the

problem being discussed problem)

2

Greedy Method for Optimization Problems
• Optimization problem

– multiple possible solutions, pick the one that gives the most value or lowest cost

• Discuss
– Knapsack problem
– Job Scheduling

• Greedy:
– Method:

• Decide on a criterion that reflects the measure you are optimizing for (value or cost)
E.g. for Knapsack maximize the money (value)

• take the action that is best now (out of the current options) according to your criterion
(i.e. pick a local optimal) and keep it (it will be part of the final solution).

– It may miss the optimal solution
– Builds the solution as it goes.

• No choice is undone
• No need to back trace it.

• Terminology:
– Problem - general
– Variations of a problem – additional specification to the general problem
– Instance of a problem – specific data (what I use in examples are instances of the problem being

discussed problem)
3

4

The 0/1 Knapsack Problem

Image from Wikipedia

A thief breaks into a store.

• The maximum total weight that he can carry is W. (Here W = 15kg)

• There are N types of items at the store. (Here N = 5)

• Each type ti has a value vi and a weight wi.
(Here, clockwise: ($2, 2kg) , ($1, 1kg) , ($10, 4kg) , ($2, 1kg) , ($4, 12kg)

• What is the maximum total value that he can carry out?
• Cannot load more than maximum weight.
• Ok if did not fill to full weight(e.g. ok if items add to 12 kg, not 15kg)

• What items should they pick to obtain this maximum value?

0/1 Knapsack - Only one of each object type j.

Other versions:
- a limited number, cj, of each item type j.
- an unlimited number of each item type j.

https://en.wikipedia.org/wiki/Knapsack_problem

0/1 Knapsack – Greedy solution

• What would a greedy thief do for 0/1 Knapsack with W, N, (vj, wj)?

– Criterion: value/weight ratio

– Method:
Sort the N items in decreasing order of ratio,
While (still have objects and knapsack not full)

if next item, j, fits, take it:
update total value: res = res + vj

update the remaining weight: wrem = wrem – wj

else skip it

– Does NOT give an optimal solution. See next page.

– Time complexity: ______________

– Space complexity: _____________

• What if we could take fractions of an item? Does Greedy with ratio
give the optimal solution? (Prove or give counter-example)

5

0/1 Knapsack, Greedy, Ratio

6

W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3=
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio: D, E, C, A, B
1.75, 1.67, 1.57, 1.3, 1.25

D (1.75=14/8) E (1.67=15/9) A (1.3=4/3)

Total value = value(D) + value(E) + value(A) =14 + 15 + 4 =33

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)Sort items in decreasing order of ratio,
While (still have objects and knapsack not full)

if next item, j, fits, take it:
update total value: res = res + vj

update the remaining weight W = W-wj

else skip it

Reordered decreasing by ratio:

7

W=21 (knapsack capacity is 21)

B (5$)

C (11$)

D (14$)

E (15$)

A (4$)

0/1
NF

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Reordered decreasing by value: E, D, C, B, A

E (15$) D (14$) B (5$)

0/1 Knapsack , Greedy, Value
Reordered decreasing by value:

Greedy does NOT always give the optimum solution
- Proof by counter example

• Goal: construct a 0/1 Knapsack instance where Greedy (with the ratio) does
not give the optimal answer. Produce: W, N, (vj,wj)

• Intuition: We want Greedy to pick only one item,A, when in fact two other
items, B and C, can be picked and together give a higher value
– Start with B and C: make them same weight, same value

– choose A s.t. it has higher ration than B (or C) , but value smaller than their sum

– Try W = 2 => fails

– Try W = 4, B = C = (2kg, $2) => fails

– Try W = 4, B = C = (2kg, $4) => can make it work:

• Item B: 2kg, $4 => ratio = 4/2 = 2

• Item C: 2kg, $4

• Item A: 3kg, $7 (pick value s.t. ratio > ratio(B) = 2)

• Knapsack max weight: 4

• => (W = 4, N = 3, ($7, 3kg), ($4, 2kg), ($4, 2kg)

– Greedy: picks A, nothing else fits => $7

– Optimal: B&C => $8

– !!! You must double-check that Greedy would pick item A

=> check the ratios: 7/3 > 4/2 (2.33 > 2).
• If item A had value 5, Greedy would have picked B and C (optimal solution).

8

Optimal solution: $8Greedy solution: $7

Item A ($7, 3kg)

Item B ($4, 2kg)

Item C ($4, 2kg)

Knapsack: W= 4kg

Variation: allow fractions of items =>
Greedy with ratio is optimal

9

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3=
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio: D, E, C, A, B
1.75, 1.67, 1.57, 1.3, 1.25

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

W=21 (knapsack capacity is 21)

E (1.67=15/9) Fraction of C
0/1, F
35.28

0/1 fractional: Total value = value(D) + value(E) + 4 *value(C)/weight(C) = 14 + 15 + 4*(11/7) =35.28

Fractional
Can take fractions of items.

Job Scheduling
(Weighted Interval Scheduling)

10

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Problem:

Given n jobs where each job has a start time, finish time
and value, (sj,fj,vj) select a subset of them that do not
overlap and give the largest total value.

Back-to-back jobs are ok. E. (5, 6, $3) and g (6, 8, $2).

Overlapping jobs cannot be both picked. E.g. (2, 5, $6)
and (3, 11, $5) overlap from 3 to 5.

11

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing:

• Sort jobs by finish time (increasing).

12

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

JobId (start, end, value)
0 (
1 (
2 (
3 (
4 (
5 (
6 (

Sort by
finish time

Weighted Interval Scheduling
(a.k.a. Job Scheduling)

Preprocessing:

• Sort jobs by finish time (increasing).

13

E.g.:
(start, end, value)
(6, 8, $2)
(2, 5, $6)
(3, 11, $5)
(5, 6, $3)
(1, 4, $5)
(4, 7, $2)

JobId (start, end, value)
0 (0, 0, $0)
1 (1, 4, $5)
2 (2, 5, $6)
3 (5, 6, $3)
4 (4, 7, $2)
5 (6, 8, $2)
6 (3, 11, $5)

Sort by
finish time

Job Scheduling variations

14

1 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

Jobs have different values.
Maximize total value.

Jobs have the same value.
Maximize number of jobs.

How would you solve each of these problems with a Greedy method?

(s, f)
(1, 4)
(2, 5)
(5, 6)
(4, 7)
(6, 8)
(3, 11)

(s, f, $)
(1, 4, $5)
(2, 5, $6)
(5, 6, $3)
(4, 7, $2)
(6, 8, $2)
(3, 11, $5)

Criterion: _____________
Method:

Criterion: _____________
Method:

1

2

3

4

5

6

1

2

3

4

5

6

• Criterion: job that Finishes First (FF)

• Algorithm Fill in your answers
// assume jobs are sorted by finish time (increasing)

// and stored at indexes 1 to N

// TC = ____ SC = ______

// You can use Queue with methods: newQueue(), Q.add(v), Q.remove()

Queue GreedyFF(int N, int* start, int *finish)

sol = newQueue()

return sol

• optimal or not (if not, can we build a counter example?)

– For max number of jobs problem – ___________

– For max total value problem – ____________

• Preprocessing, if needed: Sort jobs in increasing order of their finish time.
15

max number of jobs
Jobs are already sorted by finish time

(start, finish)

1 (1, 4)
2 (2, 5)
3 (5, 6)
4 (4, 7)
5 (6, 8)
6 (3, 11)

Class work – Greedy with Finish First to Max Number of Jobs

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

Class work –Greedy with Finish First to Max Number of Jobs - Solution

• Criterion: job that Finishes First (FF)

• Algorithm
// assume jobs are sorted by finish time (increasing)

// and stored at indexes 1 to N

// TC = __Θ(N)__ SC = __Θ(1)__

// You can use Queue with methods: newQueue(), Q.add(v), Q.remove()

Queue GreedyFF(int N, int* start, int *finish)

sol = newQueue()

sol.add(1)

last = 1

for(k = 2 to N)

if (finish[last]<=start[k])

sol.add(k)

last = k

return sol

• optimal or not (if not, can we build a counter example?)

– For max number of jobs problem – ____ optimal_________

– For max total value problem – ______not optimal_______

• Preprocessing, if needed: Sort jobs in increasing order of their finish time. Depends on sorting alg.
16

max number of jobs
Jobs are already sorted by finish time

(start, finish)

1 (1, 4)
2 (2, 5)
3 (5, 6)
4 (4, 7)
5 (6, 8)
6 (3, 11)

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

17

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

Jobs have different values. Maximize total value.

Jobs have the same value. Maximize number of jobs.Criteria Max total value Max number of jobs

Max value/length

Max value

Min length

Finishes last

Starts first

Finishes first

Starts last

1

2

3

4

5

6

1

2

3

4

5

6

The table below considers the different criteria that can be used for
Greedy and our two problem types.

For each pair, say if you think Greedy would find an optimal solution or
not.

If the answer is not, can you give a counter example?

Criteria, Optimal solution?

What jobs does
Greedy with
finishes 1st

criterion, pick?

Criteria, Optimal solution?
Answer

18

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

5

6

3

2

2

6

Jobs have different values. Maximize total value.

Jobs have the same value. Maximize number of jobs.

The table below considers the different criteria that can be used for
Greedy and our two problem types.

For each pair, say if you think Greedy would find an optimal solution or
not.

If the answer is not, can you give a counter example?

Criteria Max total value Max number of jobs

Max value/length NO NO

Max value NO NO

Min length NO NO

Finishes last NO NO

Starts first NO NO

Finishes first NO YES

Starts last NO YES

1

2

3

4

5

6

1

2

3

4

5

6

Jobs picked
with finishes
1st criterion:
1,3,5

Note: Start last picks another set, that is also optimal.

Summary and Counter Examples

19

1 6 7 12

5 8

Example showing that Greedy with largest
value does not give an optimal solution.

Greedy will pick the red job. Nothing else fits.
Better (optimal): the 2 blue jobs.

10$
9$ 9$

1 6 7 12

5 8

Example showing that min length
Does not give an optimal solution.

Greedy will pick the red job. Nothing else fits.
Better (optimal): the 2 blue jobs.

Max total value

• job = (start, finish, value)

• Dynamic Programming - optimal

• Greedy – none optimal

Max number of jobs

• job = (start, end)

• Dynamic Programming - optimal

• Greedy optimal:

– finish first (see CLRS for proof)

– start last

• Greedy NOT optimal:

– finish last

– start first

– other

Greedy Algorithms
• Greedy does NOT solve optimally:

– 0/1 Knapsack

– Job Scheduling with Max Profit

• Greedy solves optimally

– Knapsack fractional

– Job Scheduling with Max Number of Jobs
• All jobs have the same value, want to maximize number of picked jobs

– Huffman (see if time permits)

– Minimum Spanning Tree in Graphs (see soon)

• Difference between Greedy and Dynamic Programming:

– In DP you will compute two or more answers for the current
problem and pick the best of those.
• You identify and use the answer for at least two smaller problems.

– In greedy, you make the greedy choice and commit to it
• You do not undo any choice.

• (You only have one smaller problem left.)

20

1 6 7 12

5 8

10$

1 6 7 12

5 89$ 9$

Worksheet (make copies)

21
W=21 (knapsack capacity is 21)

Item A B C D E

Value 4 5 11 14 15

Weight 3 4 7 8 9

Ratio 4/3=
1.3

5/4=
1.25

11/7=
1.57

14/8=
1.75

15/9=
1.67

Reordered decreasing by ratio: D, E, C, A, B
1.75, 1.67, 1.57, 1.3, 1.25

B (1.25=5/4)

C (1.57=11/7)

D (1.75=14/8)

E (1.67=15/9)

A (1.3=4/3)

	Intoduction
	Slide 1: Greedy Algorithms for Optimization Problems
	Slide 2: Optimization Problems
	Slide 3: Greedy Method for Optimization Problems

	Knapsack(K) - 4 - Problem Versions
	Slide 4
	Slide 5: 0/1 Knapsack – Greedy solution
	Slide 6: 0/1 Knapsack, Greedy, Ratio
	Slide 7

	K - not Optimal proof by counter example
	Slide 8: Greedy does NOT always give the optimum solution - Proof by counter example

	0/1K-Fractional-ratio-optimal
	Slide 9: Variation: allow fractions of items => Greedy with ratio is optimal

	Weighted Interval Scheduling
	Slide 10: Job Scheduling (Weighted Interval Scheduling)
	Slide 11: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 12: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 13: Weighted Interval Scheduling (a.k.a. Job Scheduling)
	Slide 14: Job Scheduling variations
	Slide 15: Class work – Greedy with Finish First to Max Number of Jobs
	Slide 16: Class work –Greedy with Finish First to Max Number of Jobs - Solution
	Slide 17: Criteria, Optimal solution?
	Slide 18: Criteria, Optimal solution? Answer
	Slide 19: Summary and Counter Examples

	Conclussions
	Slide 20: Greedy Algorithms

	Worksheets
	Slide 21: Worksheet (make copies)

