
Huffman code

Greedy Algorithms

for Optimization Problems

Alexandra Stefan

111/8/2022

Huffman code
• Application: file compression

• Example from CLRS:

– File with 100,000 characters.

– Characters: a,b,c,d,e,f

– Frequency in thousands (e.g. the frequency of b is 13000):

– Goal: binary encoding that requires less memory.

a b c d e f File size after
encoding

Frequency
(thousands)

45 13 12 16 9 5 -

Fix-length
codeword

000 001 010 011 100 101

Variable-length
codeword

0 101 100 111 1101 1100

2

Huffman codes

• Internal nodes contain the sum of probabilities of the leaves
in that subtree.

Optimal prefix codeword tree
(Huffman tree) – optimal encoding

Fixed-length codeword tree

(Images from CLRS.)

Compute the number of bits needed for the whole file using each of these encodings.

345,000*1 + 13,000 * 3 + 12,000*3 + 16,000*3 + 9,000 * 4 + 5,000 * 4
= 224,000

100,000 * 3 = 300,000

a->0
b->101
c->100
d->111
e->1101
f->1100

Number of bits in code

Building the Huffman Tree
1. Make ‘leaves’ with letters and their frequency and arrange them in increasing order of

frequency.
2. Repeat until there is only one tree:

1. Create a new tree from the two leftmost trees (with the smallest frequencies) and
2. Put it in its place (in increasing order of frequency).

3. Label left/right branches with 0/1
Encoding of char = path from root to leaf that has that char

Tree property: Every internal node has two children

See book or lecture video for the step-by-step solution.
In exam or hw, you must use this method. Make sure that you always put the smallest child node to the left.

a b c d e f

Frequency
(thousands)

45 13 12 16 9 5

4

Glancing at implementation issues and options
• Good reference: https://www2.cs.duke.edu/csed/poop/huff/info/

• File Compression with Huffman coding - Practical Issues
– Given an encoded file, how will you know when it ended?

• Typically files are stored by the OS in sizes that are multiples of a specific value, so even
though your actual file takes 121 bits, on disk 128 bits are written and all that will be read
when you open the file. You need to know that after 121 you are done.

• a) encode length of useful data in the file or
• b) need a new symbol to indicate end of file. Note that you must add this symbol (with

count 1) to your set of distinct symbols used in building the Huffman tree, because you
must be able to recognize it (decode it from bits into the symbol).

– Given an encoded file, how will you know how to decode it?
• The encoding tree is not standard, but it depends on the given file =>
• Must record some information to know how to decode the file along with the file (at the

beginning) =>
– Store the Huffman tree (0- inner node, 1-leaf, after 1 read 8 bits and decode to

symbol)
– Store enough info to regenerate the tree (e.g. char and frequency pairs).

• Build the tree efficiently
– Using a heap: Heaps are efficient (lgN) for finding min,

removing min, inserting new item
• With heap: O(NlgN)
• With sort and reinsert (like on paper): O(N2)

– Using 2 sorted queues (https://en.wikipedia.org/wiki/Huffman_coding)

5

Extra

Decoding
info

Useful data

File format

https://www2.cs.duke.edu/csed/poop/huff/info/
https://en.wikipedia.org/wiki/Huffman_coding

