
Priority Queues, Binary Heaps, and
Heapsort

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

(includes slides from Vassilis Athitsos)

University of Texas at Arlington

110/15/2024

Food for thought

• 23. Merge k Sorted Lists

• 88. Merge Sorted Array

• 1046. Last Stone Weight

• Find top-k largest items in an array

• Remove item with highest priority in a collection

2

https://leetcode.com/problems/merge-k-sorted-lists/description/
https://leetcode.com/problems/merge-sorted-array/description/
https://leetcode.com/problems/last-stone-weight/description/

Priority Queues
• Goal – to support operations:

– Delete/remove the max element.

– Insert a new element.

– Initialize (organize a given set of items).

• PriorityQueue (Java, min-queue) , priority_queue (C++, max-queue)

• Min-priority Queues – easy implementation, or adapting existing ones.

• Applications:

– Sorting

– Scheduling:
• flights take-off and landing, programs executed (CPU), database queries

– Waitlists:
• patients in a hospital (e.g. the higher the number, the more critical they are)

– Graph algorithms (part of MST)

– Huffman code tree: repeatedly get the 2 trees with the smallest weight.

– To solve other problems (see Top-k here and others on leetcode)

– Useful for online processing

• We do not have all the data at once (the data keeps coming or changing).

(So far we have seen sorting methods that work in batch mode: They are given all the items at once, then they sort the items,
and finish.) 3

Behavior of a max-priority
queue

Insert in empty Max-PQ in this
order:
5, 3, 9, 1, 2

Max-PQ operation out
5, 3, 9, 1, 2 remove() -> 9
5, 3, 1, 2 , remove() -> 5

3, 1, 2 , insert(7)
7, 3, 1, 2, remove() -> 7

3, 1, 2, remove() -> 3
, 1, 2, remove() -> 2
, 1, remove() -> 1

Overview
• Priority queue

– A data structure that allows inserting and deleting items.

– On remove, it removes the item with the HIGHEST priority
• To remove the LOWEST just change the comparison function

– Implementations (supporting data structures)

• Array (sorted/unsorted)

• Linked list (sorted/unsorted)

• Heap – (an array with a special “order”)

– Advanced heaps: Binomial heap, Fibonacci heap – not covered

• Binary Heap

– Definition, properties,

– Operations (each is O(lgN))
• swimUp, sinkDown,

• insert, remove, removeAny

– Building a heap: bottom-up (O(N)) and top-down (O(NlgN))

• Heapsort – O(NlgN) time, O(1) space, https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

– Not stable, not adaptive

• Finding top k: with Max-Heap and with Min-Heap

• Extra: Index items – the heap has the index of the element. Heap <-> Data
4

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Priority Queue Implementations

How long will it take to remove MAX?

How long will it take to insert value 2? How about value 10?

Arrays and linked lists (sorted or unsorted) can be used as priority queues, but they require
O(N) for either insert or remove max.

5

Data structure Insert Remove max Create from batch of N

Unsorted Array Θ(1) Θ(N) Θ(1) (if can use the original array)

Unsorted Linked List Θ(1) Θ(N) Θ(1) (if use the original linked list)

Sorted Array O(N) (find position,
slide elements)

Θ(1) Θ(NlgN)
(e.g. mergesort)

Sorted Linked List O(N)
(find position)

Θ(1) Θ(NlgN)
(e.g. mergesort)

Binary Heap (an array) O(lgN)
(reorganize)

O(lgN)
(reorganize)

Θ(N)

Special Heaps
(Binomial heap, Fibonacci heap)

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Unsorted 1 2 7 5 3 5 4 3 1 1 9 3 4

Sorted 1 1 1 2 3 3 3 4 4 5 5 7 9

Can you use a (balanced) tree to implement a priority queue (e..g. BST, 2-3-4 tree) ?

Review

• Complete tree and nearly complete tree

• Array traversal using

– idx = idx/2 (TC?)

– left = idx*2, right = idx*2+1

6

Binary Heap

7

Notes

• A binary heap is an array

• We will view this array as a nearly complete tree

• The 1st element in the array is at index 1, not 0, in all the given code

8

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Binary Max-Heap

9

3 7 3 5 5 4

2 1 4 3

1 1

1
1

2 3

4 5 6 7

8 9 10 11 12 13

A Heap is stored as an array. Here, the first element is at index 1 (not 0).

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

Binary Min-Heap

Binary Max-Heap: Stored as Array  Viewed as Tree

10

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Practice:

Tree->Array
Array->Tree

Arrange the array data as a binary
tree: Fill in the tree in level order with
array data read from left to right.

A Heap is stored as an array. Here, the first element is at index 1 (not 0). It can start at index 0 as well.

Index computation when 1st item is at index 1 (root is at index 1)
int left(int idx) {return idx*2 ;}

int right(int idx) {return (idx*2)+1 ;}

int parent(int idx) {return idx/2 ;}

E.g.:

left(4) -> ___

right(4) -> ___

parent(4)-> ___

left(5) -> ___

right(5) -> ___

parent(5)-> ___

Index calculation

11

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Index computation when 1st item is at index 1 (root is at index 1)
int left(int idx) {return idx*2 ;}

int right(int idx) {return (idx*2)+1 ;}

int parent(int idx) {return idx/2 ;}

E.g.:

left(4) -> ___

right(4) -> ___

parent(4)-> ___

left(5) -> ___

right(5) -> ___

parent(5)-> ___

index of 1st item: _____

index of last item (based on size N): _____

Index computation when 1st item is at index 0 (root is at index 0)
int left(int idx) {return (idx*2)+1 ;}

int right(int idx) {return (idx*2)+2 ;}

int parent(int idx) {return (idx-1)/2 ;}

E.g.:

left(4) -> ___

right(4) -> ___

parent(4)-> ___

left(5) -> ___

right(5) -> ___

parent(5)-> ___

index of 1st item: _____

index of last item (based on size N): _____

2 1 1 3 4 1

3 5 4 3

7 5

9
0

1 2

3 4 5 6

7 8 9 10 11 12

value 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12

Index calculation

12

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Index computation when 1st item is at index 1 (root is at index 1)
int left(int idx) {return idx*2 ;}

int right(int idx) {return (idx*2)+1 ;}

int parent(int idx) {return idx/2 ;}

E.g.:

left(4) -> 8

right(4) -> 9

parent(4)-> 2

left(5) -> 10

right(5) -> 11

parent(5)-> 2

index of 1st item: 1

index of last item (based on size N): N

Index computation when 1st item is at index 0 (root is at index 0)
int left(int idx) {return (idx*2)+1 ;}

int right(int idx) {return (idx*2)+2 ;}

int parent(int idx) {return (idx-1)/2 ;}

E.g.:

left(4) -> 9

right(4) -> 10

parent(4)-> 1

left(5) -> 11

right(5) -> 12

parent(5)-> 2

index of 1st item: 0

index of last item (based on size N): N-1

2 1 1 3 4 1

3 5 4 3

7 5

9
0

1 2

3 4 5 6

7 8 9 10 11 12

value 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12

fixed

Binary Max-Heap: Stored as Array  Viewed as Tree

13

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

value - 9 7 5 3 5 4 3 2 1 1 3 4 1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Practice:

Tree->Array
Array->Tree

Arrange the array data as a binary
tree: Fill in the tree in level order with
array data read from left to right.

A Heap is stored as an array. Here, the first element is at index 1 (not 0). It can start at index 0 as well.

Heap properties:

P1: Order (heap): The priority of every node is smaller than or equal to his parent’s.

 Max is in the root.

 Any path from root to a node (and leaf) will go through nodes that have decreasing
value/priority. E.g.: 9,7,5,1 or 9,5,4,4

P2: Shape (complete tree: “no holes”)  array storage

=> all levels are complete except for last one,

=> On last level, all nodes are to the left.

If N items in tree =>
ℎ𝑒𝑖𝑔ℎ𝑡, ℎ = 𝑙𝑔𝑁
leaves = 𝑁/2

If tree height is h =>
The number of
nodes in the tree is
2h ≤ N ≤ 2h+1-1

Index computation when 1st item is at index 1
int left(int idx) {return idx*2 ;}

int right(int idx) {return (idx*2)+1 ;}

int parent(int idx) {return idx/2 ;}

Heap – Shape Property - Nearly Complete Tree

P2: Shape (nearly complete tree: “no holes”)  array storage

=> All levels are complete except, possibly, the last one.

=> On last level, all nodes are to the left.

14

Good

BadBad Bad

2 1 1 3 4 1

3 5 4 3

7 5

9
1

2 3

4 5 6 7

8 9 10 11 12 13

For each tree, say if it is a
max-heap or not. Check:

P1. Order
P2. Shape

153 6 2 1 0 4 0

7 5 1 4

8 4

9

2 4 1 3 5 5 5 5

3 5 5 5

7 5

9

2 1 1 3 5 5

3 5 5 5

7 5

9

1 3 5 5 5 5

3 5 5 5

7 5

9

2 1 1 3 5 5

3 5 5

7 5

9

Heap Practice

E3

E1

E5

E2

E4

163 6 2 1 0 4 0

7 5 1 4

8 4

9

2 4 1 3 5 5 5 5

3 5 5 5

7 5

9

2 1 1 3 5 5

3 5 5 5

7 5

9

1 3 5 5 5 5

3 5 5 5

7 5

9

2 1 1 3 5 5

3 5 5

7 5

9

NO
(order)

NO
(shape)

NO
(shape)

YES

E1

E3

E5

E2

E4

NO
(shape)

For each tree, say if it is a
max-heap or not. Check:

P1. Order
P2. Shape

Answers

Examples and Exercises

• Invalid heaps
– Order property violated

– Shape property violated (‘tree with holes’)

• Valid heaps (‘special’ cases)

– Same key in node and one or both children

– ‘Extreme’ heaps (all nodes in the left child are smaller than any node
in the right child or vice versa)

– Min-heaps

• Where can these elements be found in a Max-Heap?
– Largest element?

– 2-nd largest?

– 3-rd largest?

17

Heap-Based Max-Priority Queues
Remember: N is both the size and the index of last item

insert(int A[], int k, int * N)– Inserts k in A. Modifies N.

peek(int A[],int N)

– Returns (but does not remove) the element of A with the largest key.

remove(int A[],int * N)

– Removes and returns the element of A with the largest (or smallest) key. Modifies N.

increase(int A[], int p, int k)

– Changes p’s key to be k. Assumes p’s key was initially lower than k. Apply swimUp

removeAny(int A[], int p, int * N)

– Removes and returns the element of A at index p. Modifies N.

decrease(int A[], int p, int k, int N)

– Changes p’s key to be k. Assumes p’s key was initially higher than k.

– Decrease the priority and apply sinkDown.
18

Increase Key

(increase priority of an item)

swimUp to fix it

19

Example: E changes to V.

– Can lead to violation of the heap property.

swimUp V to fix the heap:

Idea: While last modified node is not the root AND it has
priority larger than its parent, swap it with his parent
and the parent becomes the last modified node.

– V not root and V>G? Yes => Exchange V and G.

– V not root and V>T? Yes => Exchange V and T.

– V not root and V>X? No. => STOP

V

S

X

G

9

4

2

1

increase(int* A, int idx, int k) //O(lgN)
if (A[idx]<k) {

A[idx]=k
swimUp(A,idx)

}
// Else reject operation

O(lg(N)) TC
b.c. only the red
links are explored)

swimUp(int* A, int idx) //O(lg(N))
while ((idx>1) && (A[idx]>A[parent(idx)]){

swap: A[idx] , A[parent(idx)]
idx = parent(idx)

}

X

S

N

O

G R

J

M

AA EV C

1

2 3

7654

1098 11 12

Letters in alphabetical order:
A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

Max-Heap

Inserting a New Record

Insert V in this heap.

- This is a heap with 12 items.

- How will a heap with 13 items look? (What shape?)

• Where can the new node be? (do not worry about the data
in the nodes for now)

Time complexity? Best: Worst: General:

20

index 1 2 3 4 5 6 7 8 9 10 11 12

Original T S O G R M N A E C A J

insert(int* A, int newKey, int* N)
(*N) = (*N)+1 // permanent change

idx = (*N) // index of increased node

A[idx] = newKey
swimUp(A,idx)

13/26/23/2

T

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

Inserting a New Record

21

V

S

N

T

G R

J

O

AA E C

1

2 3

7654

1098 11 12

13/26/23/2

M
13

insert(int* A, int newKey, int* N)
(*N) = (*N)+1 // permanent change
//same as increaseKey:

idx = (*N)
A[idx] = newKey
swimUp(A,idx)

Increase heap size (to 13),

Put V in the last position (13)

Fix up (swimUp(A,13))

Case Discussion Time
complexity

Example

Best 1 Θ(1) insert B (not V)

Worst Height of
heap

Θ(lgN) Shown here

General O(lgN)

index 1 2 3 4 5 6 7 8 9 10 11 12 13

Original T S O G R M N A E B A J

Increase and
Put V T S O G R M N A E B A J V

1st iter T S O G R V N A E B A J M

2nd iter T S V G R O N A E B A J M

3rd iter,Final V S T G R O N A E B A J M
Canvas format for the
answer: (index, value) of
updated nodes in result
heap, listed in increasing
order of indexes:
(1,V),(3,T),(6,O),(13,M)
also ok:
(1,V)(3,T)(6,O)(13,M)

sinkDown()

22

Applications/Usage:
- Priority changed due to data update (e.g.

patient feels better)
- Fixing the heap after a remove operation

(removeMax)
- One of the cases for removing a non-root

node (similar to removeMax)
- Main operation used for building a heap

with the BottomUp method.

O(lg(N))
(Only the red links
are explored)

TB

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

S

R

N

O

G C

J

M

AA E B

1

2 3

7654

1098 11 12

Assume node p is smaller than one (or both)
of his children, AND the subtrees rooted at
the children are heaps.

Make the entire tree rooted at p be a heap:

- Repeatedly exchange items as needed,
between a ‘bad’ node and his largest
child, starting at p.

- Stop when in good place (parent is larger
than both children) or it has no children

Assume heap, and value
of node changes: T->B .

sinkDown(A,p,N)
Decrease key
(Max-Heapify/fix-down/float-down)

• Makes the tree rooted at index p be a heap.

– Assumes the left and the right subtrees are
heaps.

– Also used to restore the heap when the key, from
position p, decreased.

• How:

– Repeatedly exchange items as needed,
between a node and his largest child, starting
at p.

• E.g.: T(root value) is decreased to B.

• B will move down until in a good position.

– S>O && S>B => S <-> B

– R>G && R>B => R <-> B

– C>A && C>B => C <-> B

– No left or right children (or) => stop

23

// push down DATA from node at index p if needed

sinkDown(int* A, int p, int N) - O(lgN)
le = left(p) // index of left child of p

ri = right(p) // index of right child of p

imv = idxOfMaxValue(A,p,le,ri,N)
if (imv != p) {

swap A[imv] , A[p]
sinkDown(A, imv, N)

}
//idxOfMaxValue MUST check that left and right are valid indexes

B

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

sinkDown(A,p,N)
idxOfMaxValue code
Code tracing

24

// idxOfMaxValue MUST check valid indexes le<=N and ri<=N

int idxOfMaxValue(int* A,int p,int le,int ri,int N){

int imv=p; // so far p is the index of the largest value

// there is a left child and he is bigger than the parent

if ((le≤N)&&(A[le]>A[imv]))

imv = le; // set imv to index of left child

// There is a right child and it is bigger than max value seen

if ((ri≤N)&&(A[ri]>A[imv]))

imv = ri; // set imv to index of left child

return imv;

}

Trace the code for sinkDown(A,1,12) , i.e. N=12, p=1 and A[1] is B.

sinkDown(A,p,N) - O(lgN)

le = left(p) // left child of p

ri = right(p) // right child of p

imv = idxOfMaxValue(A,p,le,ri,N);

if(imv != p){

swap A[imv] , A[p]

sinkDown(A,imv,N)

}

//idxOfMaxValue MUST check that left and right are valid indexes

B

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

Remove

This is a heap with 12 items.

How will a heap with 11 items look like?

- What node will disappear? Think about the
nodes, not the data in them.

Where is the record with the highest key?

25

index 1 2 3 4 5 6 7 8 9 10 11 12

value T S O G R M N A E C A J

N is 12

T

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

Remove

26

index 1 2 3 4 5 6 7 8 9 10 11 12

value T S O G R M N A E C A J

N is 12

index 1 2 3 4 5 6 7 8 9 10 11

Copy J J S O G R M N A E C A

sinkDown S R O G J M N A E C A

J

T

remove(int* A, int* N) // O(lgN)

swap A[1] and A[(*N)]
(*N)=(*N)-1 //permanent

sinkDown(A,1, *N)
return A[(*N)+1]

N is 11

sinkDown J

Case Discussion Time
Complexity

Example

Best 1 Θ(1) All items have the
same value

Worst Height of
heap

Θ(lgN) Content of last
node was A

General 1<=…<=lgN O(lgN)

S

R

N

O

G J M

AA E C

1

2 3

7654

1098 11

T

S

N

O

G R

J

M

AA E C

1

2 3

7654

1098 11 12

≤

Removal of a Non-Root Node

27

3 1 2 2

5 8 8

7 8

9

Remove

Give examples where new priority is:
- Increased
- Decreased

removeAny(int* A, int p, int* N) // O(lgN)
temp = A[p]
A[p] = A[(*N)]
(*N)=(*N)-1 //permanent
//Fix H at index p

if (A[p] > A[parent(p)])
swimUp (A,p)

else if (A[p] < temp)
sinkDown(A,p,N)

return temp

3 1 2 8

5 8 8

7 8

9

Remove

Insertions and Deletions - Summary
• Insertion:

– Insert the item to the end of the heap.

– Fix up to restore the heap property.

– Time: O(lg N)

– Space: O(1)

• Deletion:
– Will always remove the largest element. This element is always at the top of the heap (the first

element of the heap).

– Deletion of the maximum element:
• Exchange the first and last elements of the heap.

• Decrement heap size.

• Fix down to restore the heap property.

• Return A[heap_size+1] (the original maximum element).

• Time: O(lg N)

• Space: O(1) if iterative, O(lgN) if recursive
28

Batch Initialization
• Batch initialization of a heap

– The process of converting an unsorted array of data into a heap.

– We will see 2 methods:

• top-down and

• bottom-up.

– To work in place, we would need to start at index 0. Here I still use a
heap that starts at index 1 (for consistency with the other slides), but
in reality, if the array is full, we cannot make the cell at index 0 empty.

29

Batch Initialization
Method

Time Extra space (in addition to the
space of the input array)

Bottom-up
(fix the given array)

Θ (N) Θ(1)

Top-down
(start with empty heap and
insert items one-by-one)

O(N lg N) Θ(1) (if “insert” in the same array: heap
grows, original array gets smaller)

Θ(N) (if insert in new array)

Bottom-Up Batch Initialization

30

• See animation: https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
o Note that they do not highlight the node being processed, but directly the

children of it as they are compared to find the larger one of them.

Turns array A into a heap in O(N).
(N = number of elements of A)

//Assumes data in A starts at index 1 (not 0)

buildMaxHeap(int* A, int N) //Θ(N)
for (p = N/2; p>=1; p--)

sinkDown(A,p,N)

Time complexity: O(N)
For explanation of this time complexity see
extra materials at the end of slides.- Not
required.

6 9 1 3 2

7 8 1 2

5 4

4

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Bottom-Up build - Step-by-step

31

6 9 1 3 2

7 8 1 2

5 4

4

6 7 1 3 1

9 8 2 2

5 4

4

6 5 1 3 1

7 8 2 2

9 4

4

Fix heaps of
height 1

Fix heaps of
height 2

6 5 1 3 1

7 4 2 2

8 4

9Fix heaps of
height 3 (tree)

Space: O(1)
Time complexity: O(N) - Intuition: the bigger the

height of the heap to fix, the SMALLER the number of heaps
of that height that need to be fixed.

When fixing one heap (by hand,on paper), apply swimDown
correctly: swap as long as needed (not just one level)

0 1 2 3 4 5 6 7 8 9 10 11 12

-

buildMaxHeap(int* A, int N) //Θ(N) // Assumes data in A starts at 1

for (p = N/2; p>=1; p--) // start from parent of last node, stop at root

sinkDown(A,p,N) // makes heap at p if left and right are heaps

Here: last node is at index N=12, its parent is at index p=N/2 =12/2 = 6 => start from node at index 6

12

6

Bottom-Up Batch Initialization

32

• See animation: https://www.cs.usfca.edu/~galles/visualization/HeapSort.html
o Note that they do not highlight the node being processed, but directly the

children of it as they are compared to find the larger one of them.

Turns array A into a heap in O(N).
(N = number of elements of A)

buildMaxHeap(int* A, int N) //Θ(N)
for (p = N/2; p>=1; p--)

sinkDown(A,p,N)

Time complexity: O(N)
For explanation of this time complexity see
extra materials at the end of slides.- Not
required.

6 9 1 3 2

7 8 1 2

5 4

4

6 5 1 3 1

7 4 2 2

8 4

9

0 1 2 3 4 5 6 7 8 9 10 11 12

-

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Bottom-Up - Example

• Convert the given array to a heap using bottom-up:

(must work in place):

5, 3, 12, 15, 7, 34, 9, 14, 8, 11.

33

Top-Down Batch Initialization
• Build a heap of size N by repeated insertions in an

originally empty heap.
– E.g. build a max-heap from: 5, 3, 20, 15, 7, 12, 9, 14, 8, 11.

• Space complexity: O(1) (smart implementation)

– O(N) if not using the smart implementation and a copy is made

• Time complexity? O(NlgN)
– N insertions performed.

– Each insertion takes O(lg X) time.

• X- current size of heap.

• X goes from 1 to N.

– worst case: Θ(N lg N) (for building the heap)

• The last N/2 nodes (yellow) are inserted in a heap of
height (lgN)-1. => T(N) = Ω(NlgN) (worst case).

– Example that results in Θ(N)?

• Each of the N insertions takes at most lgN.
=> T(N) = O(NlgN)

• => T(N) = Θ(NlgN) (b.c. T(N) = Ω(NlgN) and T(N) = O(NlgN))
34

lgN

Using Heaps

• See leetcode problems tagged with Heap

• Learn how to use a PriorityQueue object from your favorite language

– Check solutions posted under Solution, but also under Discussions on leetcode.
You may find very nice code samples that show a good usage of the library
functions.

35

Priority Queues and Sorting

• Sorting with a max-heap:

– Given items to sort:

– Create a priority queue that contains those items.

– Initialize result to empty list.

– While the priority queue is not empty:

• Remove max element from queue and add it to beginning of
result.

• Heapsort – Θ(NlgN) time, Θ(1) space

– builds the heap in O(N).

– NlgN from repeated remove operations
• N/2 remove max operation can take O(lgN) each => O(NlgN)

– Not stable, not adaptive 36

Heapsort

37

See animation: https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

(Note that they do not highlight the node being processed, but directly the
children of it as they are compared to find the larger one of them.)

6 9 1 3 2

7 8 1 2

5 4

4

6 5 1 3 1

7 4 2 2

8 4

9

0 1 2 3 4 5 6 7 8 9 10 11 12

- 4 5 4 7 8 1 2 6 9 1 3 2

-

-

-

-

-

-

-

-

-

-

-

-

Note: it also works for data starting at index 0, with correct child/parent index formula.

indexes

Orig array

Heap

1st remove

2nd remove

…

Heapsort(A,N) //T(N) = _____
buildMaxHeap(A,N) // _________

while (N>1) { // ________

remove(A,&N)
}

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Heapsort

38

See animation: https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

(Note that they do not highlight the node being processed, but directly the
children of it as they are compared to find the larger one of them.)

6 9 1 3 2

7 8 1 2

5 4

4

6 5 1 3 1

7 4 2 2

8 4

9

0 1 2 3 4 5 6 7 8 9 10 11 12

- 4 5 4 7 8 1 2 6 9 1 3 2

- 9 8 4 7 4 2 2 6 5 1 3 1

- 8 7 4 6 4 2 2 1 5 1 3 9

- 7 6 4 5 4 2 2 1 3 1 8 9

- 6 5 4 3 4 2 2 1 1 7 8 9

- 5 4 4 3 1 2 2 1 6 7 8 9

- 4 3 4 1 1 2 2 5 6 7 8 9

- 4 3 2 1 1 2 4 5 6 7 8 9

- 3 2 2 1 1 4 4 5 6 7 8 9

- 2 1 2 1 3 4 4 5 6 7 8 9

- 2 1 1 2 3 4 4 5 6 7 8 9

- 1 1 2 2 3 4 4 5 6 7 8 9

- 1 1 2 2 3 4 4 5 6 7 8 9

Note: it also works for data starting at index 0, with correct child/parent index formula.

indexes

Orig array

Heap

1st remove

2nd remove

…

Heapsort(A,N) //T(N) = O(NlgN)
buildMaxHeap(A,N) // Θ(N)

for (N>1) { // Θ(N)

remove(A,&N) // O(lgN) O(NlgN)

Give an example that takes Θ(N lg N) – Normal case
Give an example that takes Θ(N) - extreme case: all equal.

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

Is Heapsort stable? - NO

• Both of these operations are unstable:

– sinkDown

– Going from the built heap to the sorted array (remove max and put at the end)

39

Heapsort(A,N)
1 buildMaxHeap(A,N)
2 while (N>1)
3 remove(A,&N)

sinkDown(A,p,N) //recursive
left = left(p) // index of left child of p
right = right(p) // index of right child of p
index=p
if (left≤(*N)&&(A[left]>A[index])

index = left
if (right≤(*N))&&(A[right]>A[index])

index = right
if (index!=p) {

swap A[p] <-> A[index]
sinkDown(A,index,N)

}

Is Heapsort Stable? - No

40

5

8
b

9

5

8
a

8
b

9
Build-Max-Heap

5
8
b

8
a

Remove 9 from
heap, and put it at

the end
5

8
b

8
a

Remove 8a from
heap, and put it at

the end

Remove 8b from
Heap, and put it at
the end

5

[9, 8a, 8b, 5] [9, 8a, 8b, 5] [8a, 5 , 8b, 9] [8b, 5, 8a, 9]

[5, 8b, 8a, 9]

Note: in this example, even if the array was a heap to
start with, the sorting part (removing max and putting
it at the end) causes the sorting to not be stable.

5 8
b

6
8
a

9

5 6

8
b

8
a

9
sinkDown (node 6)

Example 1: sinkDown operation is not stable. When a node is swapped with his child,
they jump all the nodes in between them (in the array).

Example 2: moving max to the end is not stable:

Finding the Top k Largest Elements

41

Finding the Top k Largest Elements

• Using a max-heap

• Using a min-heap

42

Finding the Top k Largest Elements
• Assume N elements

• Using a max-heap (need to have entire array)

– Build max-heap of size N from all elements, then

– remove k times

– Requires Θ(N) space if cannot modify the array (build heap in place and remove k)

– Time: Θ(N + k*lgN)

• (build heap: Θ(N), k remove ops: Θ(k*lgN))

• Using a min-heap (good for online processing, less space)

– Build a min-heap, H, of size k (from the first k elements).

– (N-k) times perform both: insert and then remove in H.

– After that, all N elements went through this min-heap and k are left so they
must be the k largest ones.

– advantage: a) less space (Θ(k))
b) good for online processing(maintains top-k at all times)

– Version 1: Time: Θ(k + (N – k)*lgk) (build heap + (N-k) insert & remove)

– Version 2 (get the top k sorted): Time: Θ(k + N*lgk) = Θ(Nlgk)
(build heap + (N-k) insert & remove + k remove)

43

Top k Largest with Max-Heap

• Input: N = 10, k = 3, array: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.
(Find the top 3 largest elements.)

• Method:
– Build a max heap using bottom-up

– Delete/remove 3 (=k) times from that heap
• What numbers will come out?

• Show all the steps (even those for bottom-up build heap).
Draw the heap as a tree.

44

Max-Heap Method Worksheet

• Input: N = 10, k = 3, array: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.

45

Top k Largest with Min-Heap Worksheet

• Input: N = 10, k = 3, array: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.
(Find the top 3 largest elements.)

• Method:
– Build a min heap using bottom-up from the first 3 (=k) elements: 5,3,12

– Repeat 7 times (where 7=N-k) : one insert (of the next number) and one remove.

– Note: Here we do not show the k-heap as a heap, but just the data in it.

46

5,
3,
12

5, 3, 12, 15, 7, 34, 9, 14, 8, 11

5,
12,
15

3

Top k Largest with Min-Heap Answers

• What is left in the min heap are the top 3 largest numbers.
– If you need them in order of largest to smallest, do 3 remove operations.

• Intuition:
– the MIN-heap acts as a ‘sieve’ that keeps the largest elements going through it.

47

5,
3,
12

5, 3, 12, 15, 7, 34, 9, 14, 8, 11

5,
12,
15

12
15,
7

12
15,
34

12
15
34

15
34
14

15
34
14

15
34
14

3 5 7 9 12 8 11

Top k Largest with Min-Heap

• Show the actual heaps and all the steps (insert, remove, and
steps for bottom-up heap build). Draw the heaps as a tree.
– N = 10, k = 3, Input: 5, 3, 12, 15, 7, 34, 9, 14, 8, 11.

(Find the top 3 largest elements.)

– Method:

• Build a min heap using bottom-up from the first 3 (=k) elements: 5,3,12

• Repeat 7 (=N-k) times: one insert (of the next number) and one remove.

48

Top largest k with MIN-Heap: Show the actual heaps and all the steps (for insert,
remove, and even those for bottom-up build heap). Draw the heaps as a tree.

49

3

5 12

15

3

5 12

15

15

5 12

3

7

5

15 12

7

7

15 12

5

34

7

15 12

34

34

15 12

7

5, 3, 12

5

3 12

9

9

12 34

15

12

15 34

9

5

15 12
5

7 12

15

14

12

14 34

15

14

15 34

12

12

15 34

8

8

14 34

15

12

15 34

8

11

11

14 34

15

14

15 34

11

After k=3 removals:
14, 15, 34

Other Types of Problems
• Is this (array or tree) a heap?

• Tree representation vs array implementation:

– Draw the tree-like picture of the heap given by the array …

– Given tree-like picture, give the array

• Perform a sequence of remove/insert on this heap.

• Decrement priority of node x to k

• Increment priority of node x to k

• Remove a specific node (not the max)

• Work done in the slides: remove, top k,…

– remove() does: remove_max or remove_min based on what type of heap it is.

• To learn using the library: use a MinPriority Queue (Java) as a MaxHeap by
providing a comparator that compares for > instead of <

• Extra, not required, but interesting: index heaps (similar idea to indirect sorting)

50

Extra Materials
not required

51

Index Heap, Handles
• So far:

– We assumed that the actual data is stored in the heap.

– We can increase/decrease priority of any specific node and
restore the heap.

• In a real application we need to be able to do more

– Find a particular record in a heap
• John Doe got better and leaves. Find the record for John in the heap.

• (This operation will be needed when we use a heap later for MST.)

– You cannot put the actual data in the heap
• The heap structure is derived from another data structure

• To avoid replication of the data. For example you also need to
frequently search in that data so you also need to organize it for
efficient search by a different criteria (e.g. ID number).

52

Index Heap Example - Workout

53

1. Show the heap with this data (fill in the figure on the right based on the HA array).
1. For each heap node show the corresponding array index as well.

Index HA
(H->A)

AH
(A->H)

Name Priority Other
data

0 4 1 Aidan 10

1 0 3 Alice 7

2 3 4 Cam 10

3 1 2 Joe 13

4 2 0 Kate 20

5 5 5 Mary 4

6 6 6 Sam 6

HA – Heap to Array (the actual heap)
AH – Array to Heap

Property:
HA(AH(j) = j e.g. HA(AH(4) = 4
AH(HA(j) = j e.g. AH(HA(0) = 0

Decrease Kate’s priority to 1. Update the heap.
To swap nodes p1 and p2 in the heap: HA[p1]<->HA[p2], and AH[HA[p1]] <-> AH[HA[p2]].

Index Heap Example - Solution

Index HA
(H->A)

AH
(A->H)

Name Priority Other
data

0 4 1 Aidan 10

1 0 3 Alice 7

2 3 4 Cam 10

3 1 2 Joe 13

4 2 0 Kate 20

5 5 5 Mary 4

6 6 6 Sam 6

54

HA – Heap to Array (HA[0] has index into Name array
AH – Array to Heap

(20)
4
0

(10)
0
1

(13)
3
2

(6)
6
6

(4)
5
5

(10)
3
4

(7)
1
3

Priority

(Satellite data) or
(Index into the Name array)

Heap index

Property:
HA(AH(j) = j e.g. HA(AH(4) = 4
AH(HA(j) = j e.g. AH(HA(0) = 0

Decrease Kate’s priority to 1. Update the heap.
To swap nodes 0 and 2 in the heap: HA[0]<->HA[2], and AH[HA[0]] <-> AH[HA[2]].

Index Heap Example
Decrease Key – (Kate 20 -> Kate 1)

Index HA
(H->A)

AH
(A->H)

Name Priority Other
data

0 4 3 1 Aidan 10

1 0 3 Alice 7

2 3 4 4 Cam 10

3 1 2 0 Joe 13

4 2 0 2 Kate 20 1

5 5 5 Mary 4

6 6 6 Sam 6

55

HA – Heap to Array
AH – Array to Heap

(13)
3
0

(10)
0
1

(1)
4
2

(6)
6
6

(4)
5
5

(10)
2
4

(7)
1
3

Property:
HA(AH(j) = j e.g. HA(AH(4) = 4
AH(HA(j) = j e.g. AH(HA(0) = 0

Continue to fix down 1. Update the heap.
To swap nodes 2 and 6 in the heap: HA[2]<->HA[6], and AH[HA[2]] <-> AH[HA[6]].

Index Heap Example
Decrease Key - cont

Index HA
(H->A)

AH
(A->H)

Name Priority Other
data

0 4 3 1 Aidan 10

1 0 3 Alice 7

2 3 4 6 4 Cam 10

3 1 2 0 Joe 13

4 2 0 2 6 Kate 20 1

5 5 5 Mary 4

6 6 4 6 2 Sam 6

56

HA – Heap to Array
AH – Array to Heap

(13)
3
0

(10)
0
1

(6)
6
2

(1)
4
6

(4)
5
5

(10)
2
4

(7)
1
3

57

Running Time of BottomUp Heap Build

• How can we analyze the running time?

• To simplify, suppose that last level if complete: => N = 2n – 1 (=> last
level is (n-1) => heap height is (n-1) = lgN) (see next slide)

• Counter p starts at value 2n-1 - 1.
– That gives the last node on level n-2.

– At that point, we call swimDown on a heap of height 1.

– For all the (2n-2) nodes at this level, we call swimDown on a heap of height 1
(nodes at this level are at indexes i s.t. 2n-1-1 ≥ i ≥ 2n-2).

……

– When p is 1 (=20) we call swimDown on a heap of height n-1.

58

buildMaxHeap(A,N)
for (p = N/2; p>=1; p--)

sinkDown(A,p,N)

Perfect Binary Trees

59

Level Nodes
per level

Sum of nodes
from root up
to this level

Heap
height

0 20 (=1) 21 – 1 (=1) n-1

1 21 (=2) 22 – 1 (=3) n-2

2 22 (=4) 23 – 1 (=7) n-3

… …

i 2i 2i+1 – 1 n-1-i

n-2 2n-2 2n-1 – 1 1

n-1 2n-1 2n – 1 0

σ𝑘=0
𝑛−12𝑘 = 2𝑛 − 1

1

2 3

7654

. . .

. .

A perfect binary tree with N nodes has:
• +1 levels
• height
• leaves (half the nodes are on the last level)
• internal nodes (half the nodes are internal)

 Nlg

 2/N

 2/N

 Nlg

… …

Running Time: O(Ν)

60

Counter
from:

Counter
to:

Level Nodes
per level

Height of

heaps rooted at
these nodes

Time per

node
(fixDown)

Time for fixing

all nodes at this
level

2n-2 2n-1 – 1 n-2 2n-2 1 O(1) O(2n-2 * 1)

2n-3 2n-2 – 1 n-3 2n-3 2 O(2) O(2n-3 * 2)

2n-4 2n-3 – 1 n-4 2n-4 3 O(3) O(2n-4 * 3)

…

20 = 1 21-1 = 1 0 20 = 1 n – 1 O(n-1) O(20 * (n-1))

• To simplify, assume: N = 2n - 1.

• The analysis is a bit complicated . Pull out 2n-1 gives:

for because

• Total time: sum over the rightmost column: O(2n-1) => O(Ν) (linear!)

,1for ,
)1(2

0


−

=


=

x
x

x
kx

k

k

2

1
=x

2

1
1

1 1

1

)1(
22

x

x
kxkx n

n

k k

kkn

−
→ −

−

=



=

−  

Removed, detailed slides

61

sinkDown(A,p,N)
Decrease key

(Max-Heapify/fix-down/float-down)
Short, but harder to understand version

• Makes the tree rooted at p be a heap.

– Assumes the left and the right
subtrees are heaps.

– Also used to restore the heap when
the key, from position p, decreased.

• How:

– Repeatedly exchange items as needed,
between a node and his largest child,
starting at p.

• E.g.: X was a B (or decreased to B).

• B will move down until in a good
position.

– T>O && T>B => T <-> B

– S>G && S>B => S <-> B

– R>A && R>B => R <-> B

– No left or right children => stop
62

XB

T

N

O

G S

I

M

AA E R

1

2 3

7654

1098 11 12

sinkDown(A,p,N) - O(lgN)
left = 2*p // index of left child of p
right = (2*p)+1 // index of right child of p
index=p
if (left≤N)&&(A[left]>A[index])

index = left
if (right≤N)&&(A[right]>A[index])

index = right
if (index!=p) {

swap A[p] <-> A[index]
sinkDown(A,index,N) }

Heap Operations

• Initialization:
– Given N-size array, heapify it.

– Time: Θ(N). Good!

• Insertion of a new item:
– Requires rearranging items, to maintain the heap property.

– Time: O(lg N). Good!

• Deletion/removal of the largest element (max-heap):
– Requires rearranging items, to maintain the heap property.

– Time: O(lg N). Good!

• Min-heap is similar.

63

Heap
• Intuition

– Lists and arrays: not fast enough => Try a tree (‘fast’ if ‘balanced’).

– Want to remove the max fast => keep it in the root

– Keep the tree balanced after insert and remove (to not degenerate to a list)

• Heap properties (when viewed as a tree):
– Every node, N, is larger than or equal to any of his children (their keys).

• => root has the largest key

– Complete tree:

• All levels are full except for possibly the last one

• If the last level is not full, all nodes are leftmost (no ‘holes’).

•  stored in an array

• This tree can be represented by an array, A.
– Root stored at index 1,

– Node at index i has left child at 2i, right child at 2i+1 and parent at

64

 i/2

swimDown

• B will move down until in a good position.

• Exchange B and T.

65

T

B

N

O

G S

I

M

AA E R

swimDown

• B will move down until in a good position.

• Exchange B and T.

• Exchange B and S.

66

T

B

N

O

G S

I

M

AA E R

swimDown

• B will move down until in a good position.

• Exchange B and T.

• Exchange B and S.

• Exchange B and R.

67

T

S

N

O

G B

I

M

AA E R

swimDown

• B will move down until in a good position.

• Exchange B and T.

• Exchange B and S.

• Exchange B and R.

68

T

S

N

O

G R

I

M

AA E B

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

69

X

T

N

O

G S

I

M

AA E R

1

2 3

7654

1098 11 12

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

70

X

T

N

O

G S

I

M

AA R

1

2 3

7654

1098 11 12
EV

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

– Exchange V and G. Done?

71

X

T

N

O

V S

I

M

AA G R

1

2 3

7654

1098 11 12

Increasing a Key

• Also called “increasing the priority” of an item.

• Such an operation can lead to violation of the
heap property.

• Easy to fix:

– Exchange items as needed, between
node and parent, starting at the node
that changed key.

• Example:

– An E changes to a V.

– Exchange V and G.

– Exchange V and T. Done?

72

X

V

N

O

T S

I

M

AA G R

1

2 3

7654

1098 11 12

Increasing a Key

• Also called “increasing the priority” of an item.

• Can lead to violation of the heap property.

• Swim up to fix the heap:

– While last modified node has priority larger than
parent, swap it with his parent.

• Example:

– An E changes to a V.

– Exchange V and G.

– Exchange V and T. Done.

73

X

V

N

O

T S

I

M

AA G R

1

2 3

7654

1098 11 12

Worksheet

74

6 9 1 3 2

7 8 1 2

5 4

4

	PriorityQueues
	Slide 1
	Slide 2: Food for thought
	Slide 3: Priority Queues
	Slide 4: Overview
	Slide 5: Priority Queue Implementations
	Slide 6: Review

	Heap
	Slide 7: Binary Heap
	Slide 8: Notes
	Slide 9: Binary Max-Heap
	Slide 10: Binary Max-Heap: Stored as Array  Viewed as Tree
	Slide 11: Index calculation
	Slide 12: Index calculation
	Slide 13: Binary Max-Heap: Stored as Array  Viewed as Tree

	Shape Property
	Slide 14: Heap – Shape Property - Nearly Complete Tree
	Slide 15: For each tree, say if it is a max-heap or not. Check: P1. Order P2. Shape
	Slide 16: For each tree, say if it is a max-heap or not. Check: P1. Order P2. Shape

	Miscellaneous
	Slide 17: Examples and Exercises
	Slide 18: Heap-Based Max-Priority Queues

	Insert & increase priority
	Slide 19: Increase Key (increase priority of an item) swimUp to fix it
	Slide 20: Inserting a New Record
	Slide 21: Inserting a New Record

	remove & decrease priority
	Slide 22: sinkDown()
	Slide 23: sinkDown(A,p,N) Decrease key (Max-Heapify/fix-down/float-down)
	Slide 24: sinkDown(A,p,N) idxOfMaxValue code Code tracing
	Slide 25: Remove
	Slide 26: Remove
	Slide 27: Removal of a Non-Root Node
	Slide 28: Insertions and Deletions - Summary

	BottomUp - build Heap
	Slide 29: Batch Initialization
	Slide 30: Bottom-Up Batch Initialization
	Slide 31: Bottom-Up build - Step-by-step
	Slide 32: Bottom-Up Batch Initialization
	Slide 33: Bottom-Up - Example

	TopDown - build heap
	Slide 34: Top-Down Batch Initialization
	Slide 35: Using Heaps

	Heapsort
	Slide 36: Priority Queues and Sorting
	Slide 37: Heapsort
	Slide 38: Heapsort
	Slide 39: Is Heapsort stable? - NO
	Slide 40: Is Heapsort Stable? - No

	Top-k largest items
	Slide 41: Finding the Top k Largest Elements
	Slide 42: Finding the Top k Largest Elements
	Slide 43: Finding the Top k Largest Elements
	Slide 44: Top k Largest with Max-Heap
	Slide 45: Max-Heap Method Worksheet
	Slide 46: Top k Largest with Min-Heap Worksheet
	Slide 47: Top k Largest with Min-Heap Answers
	Slide 48: Top k Largest with Min-Heap
	Slide 49
	Slide 50: Other Types of Problems

	Extra & Step-by-step
	Slide 51: Extra Materials not required

	Index Heap (Heap of indexes into data array)
	Slide 52: Index Heap, Handles
	Slide 53: Index Heap Example - Workout
	Slide 54: Index Heap Example - Solution
	Slide 55: Index Heap Example Decrease Key – (Kate 20 -> Kate 1)
	Slide 56: Index Heap Example Decrease Key - cont
	Slide 57

	Time Complexity proof for Bottom UP
	Slide 58: Running Time of BottomUp Heap Build
	Slide 59: Perfect Binary Trees
	Slide 60: Running Time: O(Ν)

	Step-by-step
	Slide 61: Removed, detailed slides
	Slide 62: sinkDown(A,p,N) Decrease key (Max-Heapify/fix-down/float-down) Short, but harder to understand version
	Slide 63: Heap Operations
	Slide 64: Heap
	Slide 65: swimDown
	Slide 66: swimDown
	Slide 67: swimDown
	Slide 68: swimDown
	Slide 69: Increasing a Key
	Slide 70: Increasing a Key
	Slide 71: Increasing a Key
	Slide 72: Increasing a Key
	Slide 73: Increasing a Key
	Slide 74: Worksheet

