
Count Sort, Bucket Sort, Radix Sort

(Non-Comparison Sorting)

CSE 3318 – Algorithms and Data Structures

University of Texas at Arlington

12/25/2025

Non-comparison sorts

• Count sort

• Radix sort

• Bucket sort (uses comparisons in managing the buckets)

• Comparison-based sorting: Ω(NlgN) lower bound

2

Lower-bounds on comparison-based sorting algorithms (Decision tree)

• A correct sorting algorithm must be able to distinguish
between any two different permutations of N items.

• If the algorithm is based on comparing elements, it can
only compare one pair at a time.

• Build a binary tree where at each node you compare a
different pair of elements, and branch left and right based
on the result of the comparison.

=> each permutation must be a leaf and must be
reachable

Number of permutations for n elements: n!

=> tree will have at least n! leaves. => height ≥ lg (n!) =>

height = Ω(nlgn) (b.c. lg(n!) = Θ(nlgn))

– The decision tree for any comparison-based algorithm
will have the above properties => cannot take less
than Θ(nlgn) time in the worst case.

3

Count Sort

4

Count sort

• Used to sort when keys are integers in the range [0,k]
• E.g. Sort the given numbers by the UNITS digit (the last digit), in increasing order.

A = {708, 512, 131, 24, 742, 810, 107, 634}

want:

A = {810, 131, 512, 742, 24, 634, 107, 708}

• Here

– N = ___

– k = ___

• Idea: if we know the count of each item, we can find the index where
each item will be at in the sorted array

5

Count Sort

3
Rui

0
Sam

2
Mike

2
Aaron

3
Sam

2
Tom

0
Jane

6

Counts (=> position range)

Sorted data

0 1 2 3 4 5 6

Based on counting occurrences, not on comparisons.
See animation.

Stable?

Adaptive?

Extra memory?

Time Complexity?

Does it work for ANY type of data (keys)?

https://www.cs.usfca.edu/~galles/visualization/CountingSort.html

3
Rui

0
Sam

2
Mike

2
Aaron

3
Sam

2
Tom

0
Jane

7

0 1 2 3

2 0 3 2

1st count occurrences

Sorted data; copy array

0 1 2 3

2 0 2
(=2+0)

3 5
(=2+3)

2 7
(=5+2)

2nd prefix sum: curr = prev+curr

0 1 2 3 4 5 6

Count SortBased on counting occurrences, not on comparisons.
See animation.

Stable? Yes

Adaptive? No

Extra memory? Θ(N+k)

Time Complexity? Θ(N+k)
For sorting only grades (no names), just counting is enough.

Does it work for ANY type of data (keys)?
No. E.g.: Sorting Strings, doubles

8

3
Rui

0
Sam

2
Mike

2
Aaron

3
Sam

2
Tom

0
Jane

Update with occurrences of each key

0 1 2 3

2 0 2
(=2+0)

3 5
(=2+3)

2 7
(=5+2)

prefix sum: counts[j]=counts[j-1]+counts[j];

0 1 2 3

0 0 0 0

Init counts to 0

sorted_copy array:

0 1 2 3

2 0 3 2

0 1 2 3

1 2 5 7

0
Jane

0 1 2 3

1 2 4 7

A
Jane

2
Tom

0 1 2 3 4 5 6

t=6

t=5

0 1 2 3

1 2 4 6

A
Jane

C
Tom

3
Sam

t=4

0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

Original array, A:

REPEAT

Copy back from copy to A

// Assume array A has integers in the range [0,k]

void countSort(int * A, int N, int k){

int counts[k+1];

int sorted_copy[N]; int j,t;

for(j=0; j<=k; j++) // init counts to 0

counts[j]=0;

for(t=0; t<N;t++){ // update counts

counts[A[t]]++;

}

for(j=1; j<=k; j++) // prefix sum

counts[j]=counts[j]+counts[j-1];

for(t=N-1; t>=0;t--){ // copy data in sorted order in sorted array

counts[A[t]]--;

sorted_copy[counts[A[t]]] = A[t]; //counts[A[t]] holds the index (+1) where A[t] will be in the sorted array

}

for(t=0; t<N;t++) // copy back in the original array

A[t] = sorted_copy[t];

}

TC = ___

SC = ___
9

Count sort (for an array of integers)

10

Algorithm/
problem

N = 10, k = ___
In range 0 to 9

N = 10, k = _____
In range 501 to 1500

N = 1000, k = __
In range 0 to 9

N = 1000, k = ____
In range 0 to 999

Insertion sort
(worst case)

Θ(N2)
Θ(__________) Θ(___________) Θ(___________) Θ(___________)

Count sort
Θ(N+k) Θ(__________) Θ(___________) Θ(___________) Θ(___________)

• Compare the time complexity of Selection sort and Count sort for sorting

– An array of 10 values in the range 0 to 9 vs

– An array of 10 values in the range 501 to 1500. - skip

– An array of 1000 values in the range 0 to 9 vs

– An array of 1000 values in the range 0 to 999 vs

When/for what data is count sort better?
- Is there any desired relation between k and N?
- Is there anything special (or needed) about the keys, this to work?
- Can you think of data (keys) that count sort would not easily (possibly not at all) work for?

Count sort: comparison with Insertion sort and usage

Count sort: comparison with Insertion sort
• Compare the time complexity of Selection sort and Count sort for sorting

– An array of 10 values in the range 0 to 9 vs

– An array of 10 values in the range 501 to 1500. -skip

– An array of 1000 values in the range 0 to 9 vs

– An array of 1000 values in the range 0 to 999 vs

11

Algorithm/
problem

N = 10, k = 10
In range 0 to 9

N = 10, k = 1000
In range 501 to 1500

N = 1000, k = 10
In range 0 to 9

N = 1000, k = 1000
In range 0 to 999

Insertion sort
(worst case)

Θ(N2)
Θ(102) Θ(102) Θ(10002) Θ(10002)

Count sort
Θ(N+k)

Θ(10+10)
=Θ(10)

Θ(10+1000)
=Θ(1000)

Θ(1000+10)
=Θ(1000)

Θ(1000+1000)
=Θ(1000)

Best performing method is in red.
Note that this notation of Θ(number) is not correct.
I am showing it like this to highlight the difference in the values of N and k.

Example 2

12

Sort an array of 10 English letters.

How big is the counts array?
Θ(k)
(k = 26 possible key values letters)

TC: Θ(N+k)

Example 2

13

Sort an array of 10 English letters.

How big is the counts array?
Θ(k)
(k = 26 possible key values letters)

TC: Θ(N+k)

Functions to convert key to integer
• Function (no data structure used)

– Char (the key is a char):
• char-'A'

• E.g. 'D'-'A‘ or grade-'A' (In C you can subtract 2 chars (it uses their ASCII code))

– Integer (the key is an int):

• index = key-min_key (index for current key is given by the formula key-min_key)

• k = max_key-min_key+1 (possible different keys)

• E.g .for keys (numbers) in range 501 and 1500:

index = key-501

E.g. 501-501=0 so for key (number) 501, we go to index 0 in the counts array, and similar for 1500 we
go to index 999 and for 700 we go to index 199 because: 1500-501=999, 700-501=199

• Using a data structure – will require Θ(k) extra space
– Unsorted array, L, with all k possible keys and linear search for a key in the array

and return the index -> TCkey2idx(A, k, key) = Θ(k) (where |L|=k)

– Sorted array, S, of all possible k keys, and binary search in S to find the index for a
key

=> TCkey2idx(S,k, key) = Θ(log2(k)) (where |S| = k)

– HashTable (HashMap) , H, to map unique keys to indexes. HashTables will be
covered later in the course. => TCkey2idx(H, k, key) = Θ(1) amortized
• If can guarantee that no two different keys are hashed to the same index

14

Count sort usage

15

• What data can count sort be applied for:

– Values (keys) to be sorted must be integer values or chars (or be able to map to integers
easily),

• It DOES work for negative values as well. E.g. for temperatures in range [-20, 50], the formula is temp-

min_temp = temp - (-20). E.g. (-20)-(-20)= (-20)+20 = 0, (-15)-(-20)=5, 50-(-20) = 70

- What data (keys) will count sort NOT be able to handle?

- Real numbers (float, double).

- Strings (generates very large k and it is non-trivial to uniquely map a string to an index)

• When is count sort better than worst case insertion sort?

- The number of all possible keys (k) should be asymptotically smaller than N2 (written as
k=o(N2)). Ideally k is at most proportional to N (written: k=O(N))

• In a case when both insertion sort and count sort can be used, can you think of a
reason why insertion sort would be preferred?

– If the best case of insertion sort (data is almost sorted) is likely

– Do not want to use the extra space of count sort

– Want an adaptive algorithm.

– k is very big

• How does count sort compare to the BEST case of insertion sort?

– Insertion sort is better: does not use extra space, and does less work in general (smaller
dominant term)

Least Significant Digit
Radix Sort

16

LSD Radix Sort

• LSD radix sort (Least Significant Digit)

– Addresses the problem count sort has with large range, k.

– sorts the data based on individual digits, starting at the Least
Significant Digit (LSD).

– requires a stable sort for sorting based on the digits

17

Sorting with radix sort
for each digit i = 0 to d-1 (0 is the least significant digit)

count_sort A using digit i as the key

Known that values in A are in range: [0,999] => at most 3 digits

A: {708, 512, 131, 24, 742, 810, 107, 634} (Original array)

sort by units
A: {810, 131, 512, 742, 24, 634, 107, 708}

sort by tens
A: {107, 708, 810, 512, 24, 131, 634, 742}

sort by hundreds
A: {024, 107, 131, 512, 634, 708, 742, 810}

Here (in base 10): n = 8, d = 3, k=10 (0,1,2,…9)

In base 2 (as numbers are stored): n=8, d=32 (for 4Bytes int), k=2 (bit: 0, 1)

Implementation: How do you “extract” a digit from an integer in C? Use % and /.
18

LSD Radix Sort Complexity

• What are the quantities that affect the time and space complexity?

• What is the time and space complexity?

• Properties:

- Stable?

- Adaptive?

19

LSD Radix Sort Complexity

What are the quantities that affect the time and space complexity?
– n is the number of items

– k is radix (or the base)

– d: the number of digits in the radix-k representation of each item.

What is the time and space complexity?

• Θ(d*(n+k)) time. (Θ(nd+kd))
– d * the time complexity of count sort

– See the visualization at: https://www.cs.usfca.edu/~galles/visualization/RadixSort.html

• Θ(n + k) space (for count sort).
– Θ(n) space for scratch array.

– Θ(k) space for counters/indices array.

• Properties (same as count sort):
– Stable – yes (because count sort is)

– Adaptive - no
20

https://www.cs.usfca.edu/~galles/visualization/RadixSort.html

Example 3

• Use Radix-sort to sort an array of 3-letter English words:

[sun, cat, tot, ban, dog, toy, law, all, bat, rat, dot, toe, owl]

21

What type of data can be sorted with radix sort (that uses count
sort)?

For each type of data below, say if it can be sorted with Radix sort
and how you would do it.

• Integers
– All positive __yes________

– All negative ___yes, but careful about the sign, reverse order of
magnitude (b.c. -34 is smaller than -1), there will be issues with % if
working in base 10

– Mixed ___no____________

• Real numbers __ no (count sort does not work for them)

• Strings _____ yes, but non trivial for different lengths __________
– (If sorted according to the strcmp function, where "Dog" comes before

"cat", because capital letters come before lowercase letters). - yes

– Consider “catapult” compared with “air” - careful as “cat” and “air” must
be compared, not “ult” and “air”

22

More on RadixSort - Extra

• So far we have discussed applying Radix Sort to the data in the GIVEN
representation (e.g. base 10 for numbers).

• A better performance may be achieved by changing the representation (e.g. using
base 2 or base 5) of each number. Next slide gives a theorem that provides:

– the formula for the time complexity of LSD Radix-Sort when numbers are in a different base and

– How to choose the base to get the best time complexity of LSD_Radix sort. (But it does not
discuss the cost to change from one base to another)

• The next slide is provided for completeness, but we will not go into
details regarding it.

23

Tuning Radix Sort
Lemma 8.4 (CLRS): Given n numbers, where each of them is represented using b-bits
and any r ≤ b, LSD Radix-sort with radix 2r, will correctly sort them in Θ((b/r)(n+2r)) if
the stable sort it uses takes Θ(n+k) to run for inputs in the range 0 to k.

(Here the radix (or base) is 2r and each new digit is represented on r bits)

How to choose r to optimize TC:

• r = min{b, floor(lg n)} (intuition: compare k with n and use the log of the smaller one)

– If b ≤ lg n => r = b

– If b > lg n => r = floor(lg n)

• Use as base min(2u, 2b), where 2u is the largest power of 2 smaller than n (2u≤n≤2u+1)

What is the extra space needed for each case above?

Θ(n+2r) (assuming it uses count sort as the stable sorting algorithm for each digit)

24

Bucket sort

25

TC practice

• Analyze time complexity to place N items in an array maintaining it
sorted after each item is added.

• Same question for a single linked list.

26

Bucket Sort - Idea

Bucket sort Idea:

- Split the RANGE of keys into smaller ranges/intervals.
- Number of intervals = N, number of items in the array.

- Each interval will have a corresponding bucket.

- Copy each element in its corresponding bucket in sorted order. (Maintain the bucket sorted.)

- Copy back in original array in order of buckets

27

[0.0, 0.1)

0

0.12

[0.1, 0.2)

1

0.21
0.23
0.29

[0.2,0.3)

2

0.3

[0.3,0.4)

3
[0.4,0.5)

4

0.5
0.58

[0.5,0.6)

5
[0.6,0.7)

6

0.71

[0.7,0.8)

7

0.8
0.85

[0.8,0.9)

8
[0.9,1)

9

Here all ‘buckets’ are shown as same size, but their size should depend on the number of items in them (e.g. linked list).
See animation : https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

0.58 0.71 0.23 0.5 0.12 0.85 0.29 0.3 0.21 0.8Array A:

Given: values in A are in range [0,1)

0.12 0.21 0.23 0.29 0.3 0.5 0.58 0.71 0.8 0.85Array A:

https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Index calculation
• Given an element in the array, A, how do we find the index, idx, of the bucket it

should go to?
– idx is in range 0, 1,2,…,N-1

• [0,1) case
– when known that each element, elem, in A is in range [0,1)

– idx = floor(N*elem)

• general case:
– works when elements in A are in any range

– find min and max values in A

– idx = floor(
𝑵∗ 𝒆𝒍𝒆𝒎−𝒎𝒊𝒏_𝑨

𝟏+𝒎𝒂𝒙 _𝑨−𝒎𝒊𝒏_𝑨

28

Goal:

N = _______

number of buckets = ________

indexes for buckets: ___________

Map: elem -> index
min -> __________

max -> __________

Index calculation - special case [0,1)

• given: each element, elem, in A is in range [0,1)

• idx = floor(N*elem)

Exercise 1:
It is given that A has elements in range [0,1).

A = {0.9, 0.71, 0.23, 0.05}

Use formula:__________ N = ____

29

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

N = _______

number of buckets = ________

indexes for buckets: ___________

Index calculation - general case

• works when elements in A are in any range

• find min and max values in A

• idx = floor(
𝑁∗ 𝑒𝑙𝑒𝑚−min_𝐴

1+max _𝐴−min_𝐴

• coding issues

– _______________

– _______________

Exercise 2:
A = {2, 9, 7, 1, 8}, nothing else said about A.

Use formula:__________ N = ____

30

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

elem: ____ index____ calc ___________________

N = _______

number of buckets = ________

indexes for buckets: ___________
Map:
min -> __________

max -> __________

Bucket Sort

31

Time complexity:
-Best: Θ(___)
-Average: Θ(___)
-Worst case : Θ(___)

Worst case example:

Space complexity: Θ(____)
(from:)

Adaptive – ____
Stable – ____

• Array, A, has n numbers.
– version in the CLRS textbook assumes numbers in A are in the range [0,1)

– See animation: https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

• Idea:
– Make as many buckets as number of items

– Place items in buckets . Maintain sorted buckets.

– Copy from each bucket into the original array

bucket_sort(int * A, int N)

Create array, B, of linked lists (bucket). Size of B will be N.

For each list in B:

initialize it to be empty

Compute min_A, max_A

For each elem in A,

insert elem in sorted list B[idx] where idx = floor(
𝑁∗ 𝑒𝑙𝑒𝑚−min_𝐴

1+max _𝐴−min_𝐴
)

(if numbers in A are in [0, 1) you can use: idx = floor(elem*N)

For each list in B:

concatenate it (or copy back into A in this order).

Destroy the list (if needed).

Exercise 3:
Give both an example of the data and the
time complexity for:
Best case: A=[___, ___, ___, ___]

O() Explanation:
Worst case: A=[___, ___, ___, ___, ___]

O() Explanation:

https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Bucket Sort - Practice

Exercise 3:

Give both an example of the data and the time complexity for:

Best case: A=[___, ___, ___, ___] O() Explanation:

Worst case: A=[___, ___, ___, ___, ___] O() Explanation:

32

Bucket Sort
• Array, A, has n numbers.

– version in the CLRS textbook assumes numbers in A are in the range [0,1)

– See animation: https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

• Idea:
– Make as many buckets as number of items

– Place items in buckets . Maintain sorted buckets.

– Copy from each bucket into the original array

bucket_sort(int * A, int N)

Create array, B, of linked lists (bucket). Size of B will be N.

For each list in B:

initialize it to be empty

Compute min_A, max_A

For each elem in A,

insert elem in sorted list B[idx] where idx = floor(
𝑁∗ 𝑒𝑙𝑒𝑚−min(𝐴)

1+max(𝐴)−min(𝐴)
)

(if numbers in A are in [0, 1) you can use: idx = floor(elem*N)

For each list in B:

concatenate it (or copy back into A in this order).

Destroy the list (if needed).
33

Time complexity:
-Best: Θ(N)
-Average: Θ(N)
-Worst case : Θ(N2)
(coming from worst case of insertion
sort for longest list, size N)

Worst case example (for N=10):

0.1, 0.11, 0.1001, 0.15,…

Space complexity: Θ(N)
(from: N pointes + N nodes)

Adaptive – no
Stable – yes (depending on where a
new node is inserted in a linked list)

https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Array of linked lists – simple example
/* assume new_node(), array_2_list(), and
print_list_horiz() are the ones from the
provided linked list implementation. */

typedef struct node * nodePT;

truct node {

int data;

struct node * next;

};

int arr[] = {5,1,8};

nodePT listArr[5]; //1

// size: 5*sizeof(memory address) = 5*8B=40B

// use listArr[j] like any variable L or head (of type nodePT)

// set every pointer/list to NULL

for(j=0; j<5; j++) { // 2

listArr[j]=NULL;

}

listArr[0] = new_node(5); //4

listArr[2] = array_2_list(arr, 3); //5

print_list_horiz(listArr[0]);

// Practice: create a new node with value 2

// and insert it at the beginning of

// list at index 0. Update drawing.

for(j=0; j<5; j++) {

destroy_list(listArr[j]); //11

}
34

XXXX

XXXX

XXXX

XXXX

XXXX

listArr
created in
line 1

NULL

NULL

NULL

NULL

NULL

listArr
after loop
in line 2

Drawings of listArr at different
stages in the program.

07cc

NULL

abcd

NULL

NULL

listArr
after lines
4 and 5

5 dabc 8 NULL

abcd dabc 200c

1 200c

5 NULL

07cc

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Optional: Intuition for computing the bucket index

35

min 1+max

0 Nidx

A[k]

𝑖𝑑𝑥 = 𝑓𝑙𝑜𝑜𝑟(
𝐴 𝑘 −𝑚𝑖𝑛 ∗𝑁

1+𝑚𝑎𝑥−𝑚𝑖𝑛
)

Values range:

Indexes range:

How will you compute the index, idx, for the bucket for element A[k] out of N buckets?
Let
min = min element from A and
max = max element from A.

Use N buckets => indexes: 0,1,2,…, (N-1)
We want to map min to index 0 and max to index (N-1)

𝑖𝑑𝑥

𝑁
=

𝐴[𝑘]−𝑚𝑖𝑛

1+𝑚𝑎𝑥−𝑚𝑖𝑛
⇒

How does this formula compare with the one from https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Do they make any assumptions about the data in the array?
Is there any data that that formula would not work for?

min 1+maxA[k]

idx0 N

https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Range Transformations
(Math review)

• Draw and show the mappings of the interval edges.

• [0,1) -> [0,n)

• [a,b) -> [0,1) -> [0,n)

• [a,b) -> [0,1) -> [s,t)

– What this transformation is doing is: bring to origin (a->0), scale to 1, scale
up to new scale and translate to new location s. The order matters! You
will see this in Computer Graphics as well.

36

ab

ax
y

−

−
= ynz =

xny =

sstyz +−=)(

. and that see check, a As

)(

:for formulaDirect

tb-sa-

sst
ab

ax
z

 [s,t)[a,b) -

+−
−

−
=

. and 0 that see check, a As

1

:0 if

nyb-a-

n
ab

ax
z

,n) [[a,b] -

+−

−
=

// Assume: k = number of different possible keys,

// key2idx(key) returns the index for that key (e.g. 0 for letter A)

// Records is a typename for a struct that has a ‘key’ field

void countSort(Records* A, int N, int k){

int counts[k];

Records copy[N];

for(j=0; j<k; j++) // init counts to 0

counts[j]=0;

for(t=0; t<N;t++){ // update counts

idx = key2idx(A[t].key); //assume key2index is Θ(1)

counts[idx]++;

}

for(j=1; j<k; j++) // cumulative sum

counts[j]=counts[j]+counts[j-1];

for(t=N-1; t>=0;t--){ // copy data in sorted order in copy array

idx = key2idx(A[t].key); //assume key2index is Θ(1)

counts[idx]--;

copy[counts[idx]]=A[t]; //counts[idx] holds the index (+1) where A[t] will be in the sorted array

}

for(t=0; t<N;t++) // copy back in the original array

A[t] = copy[t];

} 37

Generic count sort Algorithm

	Default Section
	Slide 1
	Slide 2: Non-comparison sorts
	Slide 3: Lower-bounds on comparison-based sorting algorithms (Decision tree)

	Count sort
	Slide 4: Count Sort
	Slide 5: Count sort
	Slide 6: Count Sort
	Slide 7: Count Sort
	Slide 8
	Slide 9
	Slide 10: Count sort: comparison with Insertion sort and usage
	Slide 11: Count sort: comparison with Insertion sort
	Slide 12: Example 2
	Slide 13: Example 2
	Slide 14: Functions to convert key to integer
	Slide 15: Count sort usage

	LSD Radix sort
	Slide 16: Least Significant Digit Radix Sort
	Slide 17: LSD Radix Sort
	Slide 18: Sorting with radix sort
	Slide 19: LSD Radix Sort Complexity
	Slide 20: LSD Radix Sort Complexity
	Slide 21: Example 3
	Slide 22: What type of data can be sorted with radix sort (that uses count sort)?
	Slide 23: More on RadixSort - Extra
	Slide 24: Tuning Radix Sort

	Bucket sort
	Slide 25: Bucket sort
	Slide 26: TC practice
	Slide 27: Bucket Sort - Idea
	Slide 28: Index calculation
	Slide 29: Index calculation - special case [0,1)
	Slide 30: Index calculation - general case
	Slide 31: Bucket Sort
	Slide 32: Bucket Sort - Practice
	Slide 33: Bucket Sort
	Slide 34: Array of linked lists – simple example

	Extra slides
	Slide 35: Optional: Intuition for computing the bucket index
	Slide 36: Range Transformations (Math review)
	Slide 37

