
Hashing

Alexandra Stefan

1

Hash tables
• Tables

– Direct access table (or key-index table): key => index
– Hash table: key => hash value => index

• Main components
– Hash function
– Collision resolution

• Different keys mapped to the same index

• Dynamic hashing/rehashing – reallocate the table as needed
– If an Insert operation brings the load factor past a threshold, e.g. 0.75, double the table capacity.

• Other load factors may be used

– If a Delete operation brings the load factor to 1/8 , half the table capacity.

• Properties:
– Good time-space trade-off
– Good for:

• Search, insert, delete – O(1) – average time

– Not good for:
• Select, sort – not supported, must use a different method

• Reading: chapter 11, CLRS (chapter 14, Sedgewick – has more complexity analysis)

• Hash Tables and Hash Functions - youtube video
2

https://www.youtube.com/watch?v=KyUTuwz_b7Q

Example

• M – table capacity.
• h – hash function that

maps a key to an index

• Let M = 10, h(k) = k%10
– Note: 10 is a bad table

size, but is used here for
ease of calculation

Insert keys:
46 -> 6
15 -> 5
20 -> 0
37 -> 7
23 -> 3
25 -> 5 collision
35 ->
 9 ->

index k

0 20

1

2

3 23

4

5 15

6 46

7 37

8

9

Collision resolution:
- Separate chaining
- Open addressing

- Linear probing
- Quadratic probing
- Double hashing 3

Hash functions

• M – table size.
• h – hash function that maps a key to an index

– We want random-like behavior:
• any key can be mapped to any index with equal probability.

– Typical functions for numeric keys:
• h(k,M) = k % M

– Best M is a prime number. (Avoid M that has a power of 2 factor, will generate more
collisions).

– Choose M a prime number that is closest to the desired table capacity.
– If M = 2p, it uses only the lower order p bits => bad, ideally use all bits.

• h(k,M) = floor(((k-A)/(B-A))* M)
– Here A≤k<B.
– Simple, good if keys are random, not so good otherwise.

• h(k,M) = floor(M*(k*A mod 1)) , 0<A<1 (in CLRS)
– Good A = 0.6180339887 (the golden ratio)
– Useful when M is not prime (can pick M to be a power of 2)
– Alternative: h(k,M) = (16161 * (unsigned)k) % M (from Sedgewick)

4

Collision Resolution: Separate Chaining

• α = N/M (N – items in the table, M – table size)

– load factor

• Separate chaining
– Each table entry points to a list of all items whose keys were mapped to that index.
– Requires extra space for links in lists
– Lists will be short. On average, size α.
– Preferred when the table must support deletions.

• Operations:
– Chain_Insert(T, x) - O(1)

• insert x in list T[h(x.key)] at beginning. No search for duplicates

– Chain_Delete(T, x) – O(1)
• delete x from list T[h(x.key)] (Here x is the record so we do not need to search for it)

– Chain_Search(T, k) – Θ(1+ α) (both successful and unsuccessful)
• search in list T[h(k)] for an item x with x.key == k.

5

Separate Chaining
Example: insert 25

• Let M = 10, h(k) = k%10

Insert keys:
46 -> 6
15 -> 5
20 -> 0
37 -> 7
23 -> 3
25 -> 5 collision
35
 9 ->

index k

0

1

2

3

4

5

6

7

8

9

23

20

25 15

46

37

6

Inserting at the beginning
of the list is advantageous
in cases where the more
recent data is more likely
to be accessed again (e.g.
new students will have to
visit several offices at UTA
and so they will be looked-
up more frequently than
continuing students.

α =

resize table

• double space

7

index k

0

1

2

3

4

5

6

7

8

9

23

20

25 15

46

37

hashing strings

• review base conversion 4 to 10:
• 312 (base 4) = > to base 10: 2*1 + 1*4 + 3*16

• sum of ascii codes

– dog => (100+111+103)%10 = 314%10 = 4

– problem: does not consider location of letters:

• cat

• act

• tac

8

Hashing Strings – Polynomial hash code
(Implementation - avoid number overflow)

 Magic numbers in polynomial hash functions

𝐿𝑒𝑡 𝑠 = 𝑠0𝑠1𝑠2 … 𝑠𝑡, 𝑏𝑒 𝑎 𝑠𝑡𝑟𝑖𝑛𝑔 (ℎ𝑒𝑟𝑒 𝑠0 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑎𝑛𝑑 𝑠𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑟𝑖𝑛𝑔).
𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 ℎ𝑎𝑠ℎ 𝑐𝑜𝑑𝑒 𝑓𝑜𝑟 𝑠 (𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [0, 𝑀 − 1]):

ℎ𝑎 𝑠, 𝑀 = 𝑠0 ∗ 𝑎𝑡 + 𝑠1 ∗ 𝑎𝑡−1 + ⋯ + 𝑠𝑡−1 ∗ 𝑎 + 𝑠𝑡 ∗ 1 %𝑀 1
𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑎𝑣𝑜𝑖𝑑 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑖𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑛𝑑 𝑎𝑝𝑝𝑙𝑦 𝑚𝑜𝑑 𝑀 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑡𝑒𝑝:

ℎ𝑎 𝑠, 𝑀 = (((… (𝑠0%𝑀 ∗ 𝑎 + 𝑠1)%𝑀) ∗ 𝑎 + 𝑠2)%𝑀) ∗ 𝑎 + ⋯ +𝑠𝑡−1)%𝑀) ∗ 𝑎 + 𝑠𝑡)%𝑀 (2)

(Both expressions give the same value for ha(s,M))

Recommendations:

• Choose a and M to be prime numbers.

• Recommended values for a: 33, 37,39,41 (citation: “Data Structures and Algorithms in Java” by Goodrich and Tamassia)

E.g. h33("dog",101) =(ASCII(d)*332 + ASCII(o)*33 + ASCII(g)) %101 = (100*1089 + 111*33+ 103)%101 = 112666 % 101 = 51
The other method:

Discussion:

1) a should have some non-zero lower order bits. (Reason: If all the lower order bits of a are 0, in expression (1), when multiplying by
powers of a and then truncating due to overflow, the influence of first letters of s is removed. Since expressions (1) and (2) give the same
result, it means that this happens even when explicitly avoiding the overflow.)

2) If a and M have a common divisor, other issues may appear and thus a better choice is to pick a and M to be relatively prime with each
other. (See a discussion here: Magic numbers in polynomial hash functions.)

 => Note that if both a and M are prime, then they are also prime with each other and because a is not a multiple of any power of 2 it will
also have non-zero lower order bits.

To understand overflow, pick a = 33 > 32 = 25 the term 33t > 32t = (25)t = 25t > 232 for t≥7 => for strings of length 8 or more, the at term alone
overflows a 4B integer (even more so after multiplying with s0 and adding the other terms).

9

int hash(char *s, int M) {

int i, h = 0, a = 33;

for (i = 0; i<strlen(s); i++) {

h = (a*h + s[i]) % M;

// here s[i] will use the ASCII code

}

return h;

}

Worked-out code for s = “dog”
Function call: hash("dog",101)
M=101, s = “dog” (ASCII(d)=100, ASCII(o)=111, ASCII(g)=103)
h=0, a=33
i = 0, s[0]->d : h = (33*0+100)%101 = 100
i = 1, s[1]->o : h = (33*100+111)%101=78
i = 2, s[2]->g : h = (33*78+103)%101 = 51
return 51

https://begriffs.com/posts/2014-03-28-magic-numbers-in-polynomial-hash.html

Hashing strings

• Note that the hash function for strings given in the previous slide can be used as
the initial hash function. Based on what type of hash table you have, you will
need to do additional work
– If you are using separate chaining, you will create a node with this word and insert it in

the linked list (or if you were doing a search, you would search in the linked list)
– If you are using open addressing:

• For linear, you can use the next cells as needed
• For quadratic, you would use this function in the expression with the quadratic terms
 E.g. index = [h33(“dog”,101) + 2i+i2]%101
• For double hashing you will need to choose another hash function (e.g. 1+h41("dog",100)) to

get the jump size
 E.g. index = {h33(dog, 101) + i*[1+h41(dog,100)]}%101

10

Collision Resolution: Open Addressing

• α = N/M (N – items in the table, M – table size)

– load factor

• Open addressing:
– Use empty cells in the table to store colliding elements.
– M > N
– α – ratio of used cells from the table (<1).
– Probing – examining slots in the table. Number of probes = number of slots examined.
– h(k,f,M) where f gives the number of failed probes/attempts: f=0,1,2,… until successful hash.

– Linear probing: h(k,f,M) = (h1(k) + f) % M,
• If the slot where the key is hashed is taken, use the next available slot and wrap around the table.
• Very bad: primary clustering - long chains; snowball effect: the longer the chain, the higher the chance to grow

– 3 reshash (linear): h(k,f,M) = (h1(k,M) + 3f) %M
• Bad: secondary clustering - If two keys hash to the same value, they follow the same set of probes. But better than

linear.

– Quadratic probing: h(k,f,M) = (h1(k) + c1f+ c2f2) % M,
• Bad: secondary clustering - If two keys hash to the same value, they follow the same set of probes. But better than

linear.

– Double hashing: h(k,f,M) = (h1(k,M) + f* h2(k,M)) % M,
• h2(k,M) should NEVER be 0. (E.g. use: h2(k,M) = 1 + k%(M-1))
• Use a second hash value as the jump size (as opposed to size 1 in linear probing).
• Want: h2(k) relatively prime with M. (relatively prime: they have no common divisor)

– M prime and h2(k,M) = 1 + k%(M-1)
– M= 2p and h2(k,M) = odd (M and h2(k) will be relatively prime since all the divisors of M are powers of 2, thus even).

– See figure 14.10, page 596 (Sedgewick) for clustering produced by linear probing and double hashing.

11

Open Addressing: quadratic
Worksheet

M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Next want to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8

9

Linear probing
- h(k,f,M) = (h1(k) + f)% M

(try slots: 5,6,7,8)

Quadratic probing example:
- h(k,f,M) = (h1(k) + 2f+f2)% M

 (try slots: 5, 8)

- Inserting 35(not shown in table):

 (try slots: 5, 8, 3,0)

Where will 9 be inserted now (after 35)?
12

f
(probe)

h1(k) + 2f+f2 %10

0

1

2

3

4

Open Addressing: quadratic
Answers

M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Next want to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1 25

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8 25 25

9

Linear probing
- h(k,f,M) = (h1(k) + f)% M

(try slots: 5,6,7,8)

Quadratic probing example:
- h(k,f,M) = (h1(k) + 2f+f2)% M

 (try slots: 5, 8)

- Inserting 35(not shown in table):

 (try slots: 5, 8, 3,0)

Where will 9 be inserted now (after 35)?
13

f
(probe)

h1(k) + 2f+f2 %10

0 5+0=5 5

1 5+3=8 8

2 5+8=13 3

3 5+2*3+32 = 5+15=20 0

4

Open Addressing : double hashing - Worksheet
M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Try to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1 25

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8 25 25

9

Double hashing example
- h(k,f,M) = (h1(k) + f* h2(k)) % M

Choice of h2 matters:

- h2a(k) = 1+(k%7): try slots: 5, 9,
- h2(25) = 1+ (25%7) = 1+ 4 = 5 =>

 h(k,f,M) = (5 + f*5)%M => slots: 5,0,5,0,…

Cannot insert 25.

- h2b(k) = 1+(k%9):
- h2(25) = 1 + (25%9) = 1 + 7 = 8 =>

 h(k,f,M) = (5 + f*8)%M => slots: 5,3,1,9,7,5,…

Where will 9 be inserted now? 14

f
(pro
be)

Index (h1(k) + f*h2b(k))%M
(5+f*8)%10

0

1

2

3

4

5

f
(pro
be)

Index (h1(k) + f*h2a(k))%M
(5+f*5)%10

0

1

2

3

f
(probe)

h1(k) + 2f+f2 %10

0 5+0=5 5

1 5+3=8 8

2 5+8=13 3

3 5+2*3+32 = 5+15=20 0

4

Double hashing

Quadratic probing

Open Addressing : double hashing - Answers
M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Try to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1 25

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8 25 25

9

Double hashing example
- h(k,f,M) = (h1(k) + f* h2(k)) % M

Choice of h2 matters:

- h2a(k) = 1+(k%7): try slots: 5, 9,
- h2(25) = 1+ (25%7) = 1+ 4 = 5 =>

 h(k,f,M) = (5 + f*5)%M => slots: 5,0,5,0,…

Cannot insert 25.

- h2b(k) = 1+(k%9):
- h2(25) = 1 + (25%9) = 1 + 7 = 8 =>

 h(k,f,M) = (5 + f*8)%M => slots: 5,3,1,9,7,5,…

Where will 9 be inserted now? 15

f
(pro
be)

Index (h1(k) + f*h2b(k))%M
(5+f*8)%10

0 5 (5+0)%10=5

1 3 (5+8)%10=3

2 1 (5+2*8)%10 =21%10= 1

3 9 (5+3*8)%10=29%10= 9

4 7 (5+4*8)%10=37%10= 7

5 5 (5+5*8)%10=45%10= 5
Cycles back to 5

f
(pro
be)

Inde
x

(h1(k) + f*h2a(k))%M
(5+f*5)%10

0 5 (5+0)%10=5

1 0 (5+5)%10=0

2 5 (5+2*5)%10 =15%10= 5
Cycles back to 5 =>
Cannot insert 25

3 0 (5+3*5)%10=20%10= 0

f
(probe)

h1(k) + 2f+f2 %10

0 5+0=5 5

1 5+3=8 8

2 5+8=13 3

3 5+2*3+32 = 5+15=20 0

4

Quadratic probing

Double hashing

Open Addressing:
Quadratic vs double hashing

M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Try to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1 25

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8 25 25

9

Where will 9 be inserted now? 16

f
(pro
be)

Index h(k)=(h1(k)+f*h2(k))%M
= (5+f*8)%10 (for k=25)

0

1

2

3

4

5

f
(probe)

Index h(k)=(h1(k) + 2f+f2)%M
=(5 + 2f+f2)%10 (k=25)

0

1

2

3

4

Quadratic hashing with: 2i+i2

h(k)= (h1(k) + 2f+f2)%M where
 h1(k) = k%M

Double hashing:
h(k)=(h1(k)+f*h2(k))%M where:
 h1(k) = k%M
 h2(k) = 1+(k%(M-1)) = 1+(k%9)
 h2(25) = 1+(25%9) = 1+7 = 8

Choice of h2 matters. See h2(k) = 1+(k%7)
h2(25) = 1+4 = 5 => h(25) cycles: 5,0,5,0
=> Could not insert 25.

Open Addressing:
Quadratic vs double hashing

M = 10, h1(k) = k%10.

Table already contains keys: 46, 15, 20, 37, 23

Try to insert 25:

h1(25) = 5 (collision: 25 with 15)

Index Linear Quadratic Double
hashing
h2(k) =
1+(k%7)

Double
hashing
h2(k) =
1+(k%9)

0 20 20 20 20

1 25

2

3 23 23 23 23

4

5 15 15 15 15

6 46 46 46 46

7 37 37 37 37

8 25 25

9

Where will 9 be inserted now? 17

f
(pro
be)

Index h(k)=(h1(k)+f*h2(k))%M
= (5+f*8)%10 (for k=25)

0 5 (5+0)%10=5

1 3 (5+8)%10=3

2 1 (5+2*8)%10 =31%10= 1

3 9 (5+3*8)%10=29%10= 9

4 7 (5+4*8)%10=37%10= 7

5 5 (5+5*8)%10=45%10= 5
Cycles back to 5

f
(probe)

Index h(k)=(h1(k) + 2f+f2)%M
=(5 + 2f+f2)%10 (k=25)

0 5 5+0=5

1 8 5+3=8

2 3 5+8=13

3 0 5+2*3+32 = 5+15=20

4

Quadratic hashing with: 2f+f2

h(k)= (h1(k) + 2f+f2)%M where
 h1(k) = k%M

Double hashing:
h(k)=(h1(k)+f*h2(k))%M where:
 h1(k) = k%M
 h2(k) = 1+(k%(M-1)) = 1+(k%9)
 h2(25) = 1+(25%9) = 1+7 = 8

Choice of h2 matters. See h2(k) = 1+(k%7)
h2(25) = 1+4 = 5 => h(25) cycles: 5,0,5,0
=> Could not insert 25.

Search and Deletion in Open Addressing

• Searching:

– Report as not found when land on an EMPTY cell

• Deletion:

– Mark the cell as ‘DELETED’, not as an EMPTY cell
• Otherwise you will break the chain and not be able to find elements following in that chain.

• E.g., with linear probing, and hash function h(k,i,10) = (k + i) %10, insert 15,25,35,5, search
for 5, then delete 25 and search for 5 or 35.

18

Open Addressing: clustering

• Linear probing

– primary clustering: the longer the chain, the higher the probability that it will
increase.

– Given a chain of size T in a table of size M, what is the probability that this chain
will increase after a new insertion?

• Quadratic probing

– Secondary clustering

19

Expected Time Complexity for Hash Operations
(under ‘perfect’ conditions)

Operation \Methods Separate chaining Open Addressing

Successful search Θ(1+α) (1/α)ln(1/(1-α))

Unsuccessful search Θ(1+α) 1/(1-α)

Insert Θ(1)
When: insert at beginning
and no search for
duplicates

1/(1-α)

Delete Θ(1)
Assumes: doubly-linked
list and node with item to
be deleted is given.

The time complexity does not depend only on α,
(but also on the deleted cells). In such cases
separate chaining may be preferred to open
addressing as its behavior has better guarantees.

Perfect conditions: simple uniform hashing uniform hashing

Reference Theorem 11.1 and 11.2 Theorem 11.6 and 11.8 and corollary 11.7 in CLRS

20

α = N/M is the load factor

Perfect Hashing

Like separate chaining, but use another hash table instead of a linked list.

– Can be done for static keys (once the keys are stored in the table, the set of keys
never changes).

– Corollary 11.11:Suppose that we store N keys in a hash table using perfect hashing. Then the
expected storage used for the secondary hash tables is less than 2N.

21

Hash Tables in Popular Languages

• “An Analysis of Hash Map Implementations in Popular Languages”
– Reference: https://rcoh.me/posts/hash-map-analysis/

– Chaining: Java, C++, C#, Scala, Go
– Open addressing: Ruby, Python

• HashMap in Java 8
– Reference: https://www.geeksforgeeks.org/internal-working-of-hashmap-java/

– In Java 8, a HashMap is implemented with separate chaining.
– Default load factor is 0.75
– For efficiency, the bucket (chain) starts as a linked list but after a certain threshold it is replaced

with a balanced tree.

• C++
– Reference: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
– “The elements of an unordered associative container are organized into buckets. Keys with the

same hash code appear in the same bucket. The number of buckets is automatically increased as
elements are added to an unordered associative container, so that the average number of
elements per bucket is kept below a bound. Rehashing invalidates iterators, changes ordering
between elements, and changes which buckets elements appear in, but does not invalidate
pointers or references to elements. For unordered_multiset and unordered_multimap,
rehashing preserves the relative ordering of equivalent elements.”

22

https://rcoh.me/posts/hash-map-analysis/
https://www.geeksforgeeks.org/internal-working-of-hashmap-java/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf

%

• % – is the remainder operator
• Note that if the number on the left is smaller than the number on

the right, the result is the number on the left (and NOT 0; 0 is the
result of the integer division in that case, but not the remainder)

• 7 % 10 is 7
• 4 % 9 is 4

• 48 % 13 is 9

23

Extra

24

	Slide 1: Hashing
	Slide 2: Hash tables
	Slide 3: Example
	Slide 4: Hash functions
	Slide 5: Collision Resolution: Separate Chaining
	Slide 6: Separate Chaining Example: insert 25
	Slide 7: resize table
	Slide 8: hashing strings
	Slide 9: Hashing Strings – Polynomial hash code (Implementation - avoid number overflow)
	Slide 10: Hashing strings
	Slide 11: Collision Resolution: Open Addressing
	Slide 12: Open Addressing: quadratic Worksheet
	Slide 13: Open Addressing: quadratic Answers
	Slide 14: Open Addressing : double hashing - Worksheet
	Slide 15: Open Addressing : double hashing - Answers
	Slide 16: Open Addressing: Quadratic vs double hashing
	Slide 17: Open Addressing: Quadratic vs double hashing
	Slide 18: Search and Deletion in Open Addressing
	Slide 19: Open Addressing: clustering
	Slide 20: Expected Time Complexity for Hash Operations (under ‘perfect’ conditions)
	Slide 21: Perfect Hashing
	Slide 22: Hash Tables in Popular Languages
	Slide 23: %
	Slide 24: Extra

