
Graphs

CSE 3318– Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

14/22/2025

References and Recommended Review

Recommended Student Review

from CSE 2315

• Representation

– Adjacency matrix

– Adjacency lists

• Concepts:

– vertex, edge, path, cycle,
connected.

• Search:

– Breadth-first

– Depth-first

• Recommended: CLRS

• Graph definition and representations

– CLRS (3rd edition) - Chapter 22.1 (pg 589)

– Sedgewick - Ch 3.7 (pg 120)

• 115-120: 2D arrays and lists

• Graph traversal

– CLRS: BFS - 22.2, DFS-22.3

– Sedgewick, Ch 5.8

• The code used in slides is from Sedgewick.

• See other links on the Code page.

2

Graphs

• Graphs are representations of structures, set
relations, and states and state-transitions.
– Direct representation of a real-world structures

• Networks (roads, computers, social)

– States and state transitions of a problem.
• Game-playing algorithms (e.g., Rubik’s cube).

• Problem-solving algorithms (e.g., for automated proofs).

• For some problems you do not have the entire graph
because it is too big. You build it as you go (based on the
moves played in the game)

• A graph is defined as G = (V,E) where:

– V : set of vertices (or nodes).

– E : set of edges.
• Each edge is a pair of two vertices in V: e = (v1,v2).

3

0

1

7

2

5

3

4

6

Graphs
• G = (V,E)

– How many graphs are here?: 1

– |V| = 8 , V: { 0, 1, 2, 3, 4, 5, 6, 7 }

– |E| = 7 , E: { (0,2), (0,6), (0, 7), (3, 4), (3, 5), (4, 5), (6,7)}.

• Paths
– Are 2 and 7 connected? Yes: paths 2-0-6-7 or 2-0-7

– Are 1 and 3 connected? No.

• Cycle
– A path from a node back to itself.

– Any cycles here? 3-5-4-3, 0-6-7-0

• Directed / undirected

• Connected component (in undirected graphs)
– A set of vertices s.t. for any two vertices, u and v, there is a path from u to v.

– Here: Maximal: {1}, {3,4,5}, {2,0,6,7}. Non-maximal {0,6,7}, {3,5},…

– In directed graphs: strongly connected components.

• Degree of a vertex
– Number of edges incident to the vertex (for undirected graphs).

– Here: degree(0) = 3, degree(1) = 0 , degree(5) = 2

• Sparse /dense

• Representation: adjacency matrix, adjacency list 4

0

1
7

2

5

3

4

6

undirected graph

Note: A tree is a graph that is connected and has no cycles

Directed vs Undirected Graphs
• Graphs can be directed or undirected.

• Undirected graph: edges have no direction

– edge (A, B) means that we can go (on that
edge) from both A to B and B to A.

• Directed graph: edges have direction

– edge (A, B) means that we can go (on that
edge) from A to B, but not from B to A.

– will have both edge (A, B) and edge (B, A) if
A and B are linked in both directions.

5

0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree

Directed vs Undirected Graphs
• Graphs can be directed or undirected.

• Undirected graph: edges have no direction

– edge (A, B) means that we can go (on that
edge) from both A to B and B to A.

• Directed graph: edges have direction

– edge (A, B) means that we can go (on that
edge) from A to B, but not from B to A.

– will have both edge (A, B) and edge (B, A) if
A and B are linked in both directions.

6

0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree 2 2 0 0 1

Out-degree 2 0 2 0 1

Strongly Connected Components
(Directed Graphs)

• How many “connected components” does this
graph have?

1. Can you get from 0 to every other vertex?

2. Can you get from 3 to 6?

• For directed graphs we define strongly
connected components: a subset of vertices, Vs,
and the edges between them , Es, such that for
any two vertices u,v in Vs we can get from u to
v (and from v to u) with only edges from Es.

– Strongly connected components in this graph:

 {0,1,4,5}, {0,4}, {1,5,4}, {0,5,4}

– NOT strongly connected components.

 {6,2,3}, {0,1} Why?

7

0 1

4 5 6

2 3

0 1

4 5

1

4 5

0

4 5

0

4

Strongly connected components:

0 1

NOT strongly connected

Graph

Graph Representations

• G = (V,E). Let |V| = N and |E| = M.

– |V| is the size of set V, i.e. number of vertices in the graph. Similar for |E|.

 Notation abuse: V (and E) instead of |V| (and |E|).

• Vertices: store N

– E.g.: If graph G has N=8 vertices, those vertices will be: 0, 1, 2, 3, 4, 5, 6, 7.

– Excludes case where additional labels are needed for vertices (e.g. city names).

• Edges: 2 representations:

8

Adjacency matrix:
A is a 2D matrix of size VxV

Adjacency lists:
A is a 1D array of V linked lists

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

1 2 3

0

0

0

2 3

1

1

0

1

2

3

Adjacency Matrix

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

9

0

1

7

2

5

3

4

6

V vertices labelled: 0,1, . . . , V-1.
Represent edges using a 2D matrix, M, of size V*V.

M[x][y] = 1 if and only if there is an edge from x to y.
M[x][y] = 0 otherwise (there is no edge from x to y).

- Space complexity: Θ(V2)
- Time complexity for
add/remove/check edge:
Θ(1)
- Time complexity to find
neighbors: Θ(V)

Note: the adjacency matrix of non-directed graphs is symmetric.

C implementation for
Adjacency Matrix

(Undirected graph)

typedef struct struct_graph * graphPT;

struct struct_graph {

 int undirected;

 int V;

 int ** E;

};

graphPT newGraph(int V, int undirected) {

 graphPT res = malloc(sizeof(struct struct_graph));

 res->undirected = undirected;

 res->V = V;

 res->E = alloc_2d(V, V);

// the graph contains no edges (also 0 from caloc).

 for (int i = 0; i < V; i++)

 for (int j = 0; j < V; j++) res->E[i][j] = 0;

 return res;

}

int edgeExists(graphPT g, int x, int y){ // Θ(1)

 return g->E[x][y];

}

void addEdge(graphPT g, int x, int y){ // Θ(1)

 g->E[x][y] = 1;

 if (g->undirected ==1) g->E[y][x] = 1;

}

void removeEdge(graphPT g, int x, int y){ //Θ(1)

 g->E[x][y] = 0;

 if (g->undirected ==1) g->E[y][x] = 0;

}

10

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

void destroyGraph(graphPT g){

 if (g == NULL) return;

 free_2d(g->E, g->V, g->V);

 free(g);

}

11

// the memory allocated by this function is initialized to 0

int ** alloc_2d(int rows, int columns)

{

 int row;

 // allocate space to keep a pointer for each row

 int ** table = calloc(rows , sizeof(int *));

 // VERY IMPORTANT: allocate the space for each row

 for (row = 0; row < rows; row++)

 table[row] = calloc(columns , sizeof(int));

 return table;

}

void free_2d(int ** array, int rows, int columns) {

 // VERY IMPORTANT: free the space for each row

 for (int row = 0; row < rows; row++)

 free(array[row]);

 // free the space with the pointer to each row.

 free(array);

}

Dynamic 2D array (allocate and free)

Draw a picture
with the data
representation.

Adjacency Lists

12

0

1

7

2

5

3

4

61

0

3

2

5

7

4

6

1 2 5 6 7

0

0

4 5

3 5 6 7

0

0

0

3 4

4

4

A

• Represent the edges of the graph by an array of linked lists.
– Let’s name that array A

– A[x] is a list containing the neighbors of vertex x.

C implementation of Adjacency Lists
typedef struct struct_node * nodePT;

struct struct_node{

 int data;

 nodePT next;

}

// struct_graph* is used to hide the implementation

typedef struct struct_graph * graphPT;

struct struct_graph{

 int undirected;

 int V;

 nodePT * E; // array of linked lists

};

//Time: Θ(deg(x)), O(V) Space: Θ(1) _

int edgeExists(graphPT g, int x, int y) {

 for(nodePt n=g->E[x]; n!=NULL; n=n->next)

 if (n->data == y) return 1;

 return 0;

}

//Time: Θ(deg(x)), O(V) Space: Θ(1) _

void addEdge(graphPT g, int x, int y){

 if (edgeExists(g, x, y)) return;

 g->E[x]=insert_sorted(g->E[x], NULL, new_node(y, NULL)); // insert in order

 if ((x != y) && (g->undirected == 1))

 g->E[y]=insert_sorted(g->E[y], NULL, new_node(x, NULL)); //insert in order

}

// Similar for remove edge: iterate through lists of x and y to find the other and remove it.
13

1 2 3 6

0

0

0

3 4

4

1

Adjacency Lists

G(V,E)

• Space

– for A

– For nodes:

• Time to check if an edge exists or not

– Worst case:

14

• Time to remove an edge?

• Time to add an edge?

1 2 3

0

0

0

2 3

1

1

A

Adjacency Lists

G(V,E)

• Space: Θ(E + V)

– For A: Θ(V)

– For nodes: Θ(E)

– If the graph is relatively sparse, E << V2, this
can be a significant advantage.

• Time to check if an edge exists or not: O(V)

– Worst case: Θ(V).

• Each vertex can have up to V-1 neighbors,
and we may need to go through all of them
to see if an edge exists.

– Slower than using adjacency matrices.

15

• Time to remove an edge: O(V)

– If must check if the edge exists.

• Time to add an edge: O(V)

– If must check if the edge exists.

• Why? Because if the edge
already exists, we should not
duplicate it.

1 2 3

0

0

0

2 3

1

1

A

Check Out Posted Code

• graph.h: defines an abstract interface for basic graph functions.

• graph_matrix.c: implements the abstract interface of graph.h, using an adjacency matrix. See also:
twoD_arrays.h, twoD_arrays.c for a 2D matrix implemention.

• graph_list.c: also implements the abstract interface of graph.h, using adjacency lists.

• graph_main: a test program, that can be compiled with either graph_matrix.c or graphs_list.c.

16

Sparse Graphs

• If G(V,E) , max possible edges.
– Directed: Θ(V2) Exact: V*(V-1)

– Undirected : Θ(V2) Exact: [V*(V-1)]/2

• Sparse graph

– A graph with E << V2 (E much smaller than V2).
– https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwi

WnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:

– E.g. consider an undirected graph with 106 nodes

• Number of edges if 20 edges per node: 106*20/2

• Max possible edges 106*(106-1)/2

 => 105 factor between max possible and actual number of
edges

 => Use adjacency lists

– Can you think of real-world data that may be represented
as sparse graphs?

17

0 2

1

34

https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwiWnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:
https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwiWnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:

Student self study: Space Analysis:
Adjacency Matrices vs. Adjacency Lists

• Suppose we have an undirected graph with:

– 10 million vertices.

– Each vertex has at most 20 neighbors.

• Individual practice: Calculate the minimum space needed to store this graph
in each representation. Use/assume:
– A matrix of BITS for the matrix representation

– An int is stored on 8 bytes and a memory address is stored on 8 bytes as well.

Calculate the space requirement (actual number, not Θ) for each representation.

Compare your result with the numbers below.

Check your solution against the posted one. Clarify next lecture any questions you may have.

• Adjacency matrices: we need at least 100 trillion bits of memory, so at least
12.5TB of memory.

• Adjacency lists: in total, they would store at most 200 million nodes. With 16
bytes per node (as an example), this takes at most 3.28 Gigabytes.

• We’ll see next how to compute/verify such answers.
18

Steps for Solving This Problem:
understand all terms and numbers

• Suppose we have an undirected graph with:
– 10 million vertices.

– Each vertex has at most 20 neighbors.

• Adjacency matrices: we need at least 100 trillion bits of
memory, so at least 12.5TB of memory.

• Adjacency lists: in total, they would store at most 100 million
nodes. With 16 bytes per node (as an example), this takes 3.28
Gigabytes.

• Find ‘keywords’, understand numbers:

– 10 million vertices => 10 * 106

– Trillion = 1012

– 1 TB (terra bytes) = 1012 bytes

– 1GB = 109 bytes

– 100 Trillion bits vs 12.5 TB (terra bytes) 19

Solving: Adjacency Matrix
• Suppose we have a graph with:

– 10 million vertices. => V = 10*106 =107

– Each vertex has at most 20 neighbors.

• Adjacency matrix representation for the graph:

– The smallest possible matrix: a 2D array of bits =>

– The matrix size will be: V x V x 1bit =>

 107 * 107 * 1bit = 1014 bits

– Bits => bytes:

1byte = 8bits => 1014bits = 1014/8 bytes = 100/8*1012bytes =
12.5*1012bytes

– 12.5*1012bytes = 12.5 TB (final result)

201012bytes = 1TB

Solving: Adjacency List
• Suppose we have an undirected graph with:

– 10 million vertices. => V = 107

– Each vertex has at most 20 neighbors.

• Adjacency lists representation of graphs:

– For each vertex, keep a list of edges (a list of neighboring vertices)

– Space for the adjacency list array:

 = 10 million vertices*8 bytes (memory address) = 8*107 bytes = 0.08 GB

– Space for all the nodes (from the list for each vertex):
≤ 107vertices * (20 neighbors/vertex) = 20*107 nodes = 2*108 nodes

Assume 16 bytes per node: 8 bytes for the next pointer, and 8 bytes for the
data (vertex):

2*108 nodes * 16byte/node = 32 * 108 bytes = 3.2 * 109 bytes = 3.2GB

Total: 3.2GB + 0.08 GB = 3.28GB (109 bytes = 1GB (GigaByte))
21

Graph Traversal / Graph Search

• We will use "graph traversal" and "graph search" almost
interchangeably.
– However, there is a small difference:

• "Traversal": visit every node in the graph.

• "Search": visit nodes until find what we are looking for. E.g.:

– A node labeled "New York".

– A node containing integer 2014.

• Graph traversal:
– Input: start/source vertex.

– Output: a sequence of nodes

resulting from graph traversal.

22

0

1

7

2

5

3

4

6

Depth-First Search (DFS) - call: DFS(G)

- O(V+E) (when Adj list repr)

- Explores the vertices by following down a
path as much as possible, backtracking and
continuing from the last discovered node.

- Useful for

• Finding and labelling strongly connected
components (easy to implement)

• Finding cycles

• Topological sorting of DAGs (Directed Acyclic Graphs).

23

Breath-First Search (BFS) - call: BFS(G,s)

- O(V+E) (when Adj list repr)

- Explores vertices in the order:
– root, (white) (Here root = starting vertex, s)

– vertices 1 edge away from the root, (yellow)

– vertices 2 edges away from the root, (orange)

– … and so on until all nodes are visited

- If graph is a tree, gives a level-order traversal.

- Finds shortest paths from a source vertex.

 *Length of the path is the number of edges on it.
E.g. Flight route with fewest connections.

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

7

For both DFS and BFS the resulting trees depend on the order in which neighbors are visited.

Graph Traversals

Below, nodes traversed in order: 0, 1,4,5, 6,7, 2,3

Vertex coloring while searching

• Vertices will be in one of 3 states while searching and
we will assign a color for each state:

– White – undiscovered

– Gray – discovered, but the algorithm is not done processing it

– Black – discovered and the algorithm finished processing it.

24

Breadth-First Search (BFS)
CLRS 22.2

BFS-Visit(G,s) // search graph G starting from vertex s.

1. For each vertex u of G
1. color[u] = WHITE // undiscovered
2. dist[u] = inf // distance from s to u
3. pred[u] = NIL // predecessor of u on the path from s to u

2. color[s] = GRAY // s is being processed

3. dist[s] = 0
4. pred[s] = NIL
5. Initialize empty queue Q
6. put(Q,s) // s goes to the end of Q

7. While Q is not empty
1. u = get(Q) // removes u from the front of Q
2. For each y adjacent to u //explore edge (u,y) // in increasing order

1. If color[y] == WHITE
1. color[y] = GRAY
2. dist[y] = dist[u]+1
3. pred[y] = u
4. put(Q,y)

3. color[u] = BLACK

0 1

4 5 6

3 2

Aggregate time analysis: for each vertex, for each edge => 2*E=>O(E)

Representation BFS time
complexity

Adj LIST O(V+E)

Adj MATRIX O(V2)

Vertex Edge Distance

s

Queue, Q:

Space complexity: O(V)

Time complexity:

Breadth-First Search (BFS)
CLRS 22.2

Solution – to do
BFS-Visit(G,s) // search graph G starting from vertex s.

1. For each vertex u of G
1. color[u] = WHITE // undiscovered
2. dist[u] = inf // distance from s to u
3. pred[u] = NIL // predecessor of u on the path from s to u

2. color[s] = GRAY // s is being processed

3. dist[s] = 0
4. pred[s] = NIL
5. Initialize empty queue Q
6. put(Q,s) // s goes to the end of Q

7. While Q is not empty
1. u = get(Q) // removes u from the front of Q
2. For each y adjacent to u //explore edge (u,y) // in increasing order

1. If color[y] == WHITE
1. color[y] = GRAY
2. dist[y] = dist[u]+1
3. pred[y] = u
4. put(Q,y)

3. color[u] = BLACK

0 1

4 5 6

3 2

Aggregate time analysis: for each vertex, for each edge => 2*E=>O(E)

Representation BFS time
complexity

Adj LIST O(V+E)

Adj MATRIX O(V2)

Vertex Edge Distance

s

Queue, Q:

Space complexity: O(V)

Time complexity:

Breadth-First Search (BFS):

Note that the code above, CLRS22.2 algorithm, assumes that you
will only call BFS(G,s) once for s, and not attempt to find other
connected components by calling it again for unvisited nodes.

If the graph is NOT connected, you will not reach all vertices
when starting from s => time complexity is O, not Θ.

(I have seen variation where they restart BFS from the first unvisited node, like DFS)

27

Depth-First Search (DFS) –
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u // explore edge (u,y) // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred)

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK

28

4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __

__ / __ __ / __ __ / __

Space complexity: O(____)

Time complexity:

Depth-First Search (DFS) –
Adj List

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY

2. ___

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred)

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
29

4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __

__ / __ __ / __ __ / __

Space complexity: O(____)

Time complexity:

Depth-First Search (DFS) –
Adj Matrix

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY

2. __

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred)

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
30

4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __

__ / __ __ / __ __ / __

Space complexity: O(____)

Time complexity:

Depth-First Search (DFS) –
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u // explore edge (u,y) // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred)

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK

31

4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST Θ(V+E) Θ(neighbors of u)

Adj MATRIX Θ(V2) Θ(V)

List:

__ / __ __ / __ __ / __ __ / __

__ / __ __ / __ __ / __

Space complexity: O(V)

Time complexity:

Visited
vertex

Pred

Depth-First Search (DFS) –
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u // explore edge (u,y) // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred)

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK

32

4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST Θ(V+E) Θ(neighbors of u)

Adj MATRIX Θ(V2) Θ(V)

List:

__ / __ __ / __ __ / __ __ / __

__ / __ __ / __ __ / __

Space complexity: O(V)

Time complexity:

Visited
vertex

Pred

33

Edge Classification: tree, backward, C/F

We will use the labels: tree, backward, C/F and not care if C/F is a forward or a cross.

The edge classification depends on the order in which vertices are discovered, which
depends on the order by which neighbors are visited.

34

4 6

3 5 0

2 1 4 6

3 5 0

2 1

DFS(G,0): 0, 2, 1, 5, 3, 6, 4
Visit neighbors of 3 in order: 6 and then 4

DFS(G,0): 0, 1, 2, 5, 3, 4, 6
Visit neighbors in increasing order.

Edge type
for (u,v)

Color
of v

Arrow
color (my
convention)

Comments

Tree White v is first discovered

Backward Gray There is a cycle

C/F
(Forward)

Black Shortcut.
v is a descendant of u
v started after u started

C/F
(Cross)

Black v is not a descendant of u
v started before u started

v started and finished
BEFORE u started

v started and
finished AFTER
u started

Edge Classification for
Undirected Graphs

• An undirected graph will only have:

– Tree edges

– Back edges

35

Topological Sorting
Topological sort of a directed acyclic graph (DAG), G, is a linear
ordering of its vertices s.t. if (u,v) is an edge in G, then u will be listed
before v (all edges point from left to right).

• If a graph has a cycle, it CANNOT have a topological sorting.

Application:

1. Identify strongly connected components in directed graphs.

2. Task ordering (e.g. for an assembly line)

– Vertices represent tasks

– Edge (u,v) indicates that task u must finish before task v starts.

– Topological sorting gives a feasible order for completing the tasks.

36

Algorithm version 1 (Alexandra)

1. Initialize an array, res

2. Run DFS

 - If cycle found, quit => NO topological order

 - Every time a vertex finishes, add it in res at next
position.

3. Reverse the array res and return it. (It will
have the vertices listed in decreasing order of
DFS finish time).

Algorithm version 2 (CLRS):

1. Initialize an empty linked list L.

2. Call DFS(G) with modification:

 When a vertex finishes (black) add it at the
beginning of linked list L.

 NOTE: If a cycle is detected (backward edge),
return null. => No topological order.

3. Return L

0 1

4 5 6

2 3

What would
you use in Java
for L?

Give TC for
each version.

Directed Acyclic Graphs (DAG)
&

Detecting Cycles in a Graph

• A graph has a cycle if a DFS traversal finds a backward edge
(an edge that points to a gray node).
– Applies to both directed and undirected graphs.

• A Directed Acyclic Graph (DAG) is a directed graph that has no
cycles.

37

0 1

4 5 6

2 3

Topological Sorting - Worksheet

38

0 1

4 5 6

2 3 0 1

4 5 6

2 3

Example 2 (from previous page) Example 1

Topological order: Topological order:

• There may be more than one topological order for a DAG.
In that case, any one of those is good.

• Red arrows show what is different from the graph in Example 1.

0 1

4 5 6

2 3

Example 3

Topological order:

Topological Sorting - Answer

39

0 1

4 5 6

2 3 0 1

4 5 6

2 3

Example 2Example 1

Topological order:
 4, 0, 1, 5, 6, 2, 3
(0, 4, 1, 5, 6, 2, 3)

Topological order:
 6, 4, 2, 3, 0, 1, 5
(0, 4, 1, 6, 2, 3, 5)
(0, 4, 1, 6, 2, 5, 3)

0 1

4 5 6

2 3

Example 3

Topological order: none. It has a cycle.

Simple pseudocode:

Run DFS and return time finish time data.

 - If cycle found, quit => NO topological order

Return array with vertices in reversed
order of finish time.

• There may be more than one topological order for a DAG.
In that case, any one of those is good.

• Red arrows show what is different from the graph in Example 1.

40

4 6

3 5 0

2 1

_ _ _ _

_ _ _

4 6

3 5 0

2 1

_ _ _ _

_ _ _

Strongly Connected Components in a Directed Graph

Visited vertex Pred Finish

Strongly_Connected_Components(G)

1. finish1= DFS(G) //Call DFS and return the vertex finish time,

finish1

2. Compute GT

3. Call DFS(GT), but in its main loop consider the vertices in order
of decreasing finish time,finish1, (i.e. in topological order).

4. Output the vertices of each tree from line 3 as a separate
strongly connected component.

Where: GT = (V, ET) , with ET= {(y,x) : (x,y) ∈ E}

- the transpose of G: a graph with the same vertices as G, but with edges
in reverse direction.

Finished (reverse order):
(Every node that finishes is added at the front) Consider different list implementations (array/linked list), and the time
complexity for them. Can you use a regular array of size N? Can you add every node that finishes at the END?

Applications of Strongly Connected Components (SCC)

• Simplify graph: collapse every SCC in one node

• From stackoverflow (https://stackoverflow.com/questions/11212676/what-are-strongly-connected-components-used-for)

– Model checking - “model checking is applied widely in the industry - especially for proving
correctness of hardware components.”

– Vehicle routing applications – “A road network can be modeled as a directed graph, with
vertices being intersections, and arcs being directed road segments or individual lanes. If the
graph isn't Strongly Connected, then vehicles can get trapped in a certain part of the graph (i.e.
they can get in, but not get out).”

• From Wikipedia (https://en.wikipedia.org/wiki/Strongly_connected_component)

– SCC “may be used to solve 2-satisfiability problems (systems of Boolean variables with constraints
on the values of pairs of variables)”

• From neo4j (https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/strongly-connected-components/)
– “In the analysis of powerful transnational corporations, SCC can be used to find the set of firms in

which every member owns directly and/or indirectly owns shares in every other member.
Although it has benefits, such as reducing transaction costs and increasing trust, this type of
structure can weaken market competition.”

– “SCC can be used to compute the connectivity of different network configurations when
measuring routing performance in multi hop wireless networks”

• “applications in cell methods for the numerical study of discrete dynamical systems”
https://math.stackexchange.com/questions/32041/uses-of-strongly-connected-components

41

https://stackoverflow.com/questions/11212676/what-are-strongly-connected-components-used-for
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/2-satisfiability
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/strongly-connected-components/
https://math.stackexchange.com/questions/32041/uses-of-strongly-connected-components

Directed Graphs – Adjacency Matrix - Worksheet

42

0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree

Fill in the matrix representation.
Use row as source and column as destination for edges.
Update it for each edge:
(0,2), (0,6),
(3,4)
(7,0)
…

Directed Graphs – Adjacency List - Worksheet

43

0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree

Give the Adjacency list representation.
Size __ array of _____________ (type of data in array)
Update it for each edge:
(0,2), (0,6),
(3,4)
(7,1)
…

Extra Slides

44

C implementation for Adjacency Matrix –Undirected graph

void graphCreateAndWork() {

 int N;

 scanf("%d",&N);

 int E[N][N];

 for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++) E[i][j] = 0;

 // call graph function here, e.g.:

 // addEdge(N,E,1,3);

}

int edgeExists(int N, int E[][N], int v1, int v2){

 if (v1>=N || v1<0 || v2>=N || v2<0) return -1;

 return E[v1][v2];

}

void addEdge(int N, int E[][N], int v1, int v2){

 if (v1>=N || v1<0 || v2>=N || v2<0) return;

 E[v1][v2] = 1;

 E[v2][v1] = 1;

}

void removeEdge(int N, int E[][N], int v1, int v2){

 if (v1>=N || v1<0 || v2>=N || v2<0) return;

 E[v1][v2] = 0;

 E[v2][v1] = 0;

} 45

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

Remember that you cannot
return, from a function, an
array allocated on the stack
(with [][]) . Function
graphCreateAndWork must
NOT return E.

Simple version where the
graph is represented by
only N and E.

DFS with time stamps

• Next, DFS with ‘time stamps’ of when a node u was first discovered (d[u]) and the time when the
algorithm finished processing that node (finish[u]).

• The time stamps are needed for:

– Topological sorting

– Finding strongly connected components

– edge labeling (to distinguish between forward and cross edges)
• tree edge

• backward edge

• forward edge

• cross edge

• The following pseudo-code does not specify all the details of the implementation

46

Depth-First Search (DFS)
(with time stamps) - CLRS

DFS(G)

1. For each vertex u of G

1. color[u] = WHITE

2. pred[u] = NIL

3. d[u] = -1

4. finish[u] = -1

2. time = 0

3. For (u=0;u<G.N;u++) //each vertex u of G

1. If color[u] == WHITE // u is in undiscovered

1. DFS_visit(G, u ,&time, color, pred, d, finish)

// Search graph G starting from vertex u. u must be WHITE

DFS_visit(G,int u, int* time, ColType*color, int* pred, int* d, int* finish)

1. (*time) = (*time) + 1

2. d[u] = time // time when u was discovered

3. color[u] = GRAY

4. For each v adjacent to u // assume increasing order

1. If color[v]==WHITE // if color[v]==GRAY=>cycle found

1. pred[v] = u

2. DFS_visit(G,v,…..)

5. color[u] = BLACK

6. (*time) = (*time) + 1 //no two time stamps are equal.

7. finish[u] = time
47

4 6

3 5 0

2 1

Node u will be:
- WHITE before time d[u],
- GRAY between d[u] and finish[u],
- BLACK after finish[u]

WHITE GRAY BLACK

d[u] finish[u]

(See CLRS page 605 for step-by-step example.)

Visited
vertex

Pred Start Finish

__ / __ / __

Representation DFS DFS-Visit(G,u)

Adj LIST Θ(|V|+|E|) Θ(neighbors of u)

Adj MATRIX Θ(|V|2) Θ(|V|)

Discover
time

Finish
time

__ / __ / __ __ / __ / ____ / __ / __

pred

__ / __ / __ __ / __ / __ __ / __ / __

When coding you can use any
convention to represent the
colors: strings, chars(w/b/g),
int (0,1,2), etc.

In the graph picture below,
assume no answer means
the initial values: NIL, -1,-1

Space
complexity:
O(V)

Time complexity:

DFS(G):

48

0 1

4 5 7

8 3

DFS(G) (note that 0 moved)

Convention:
start /end
pred

Run DFS on the graphs below. Visit neighbors of u in increasing order.
For each node, write the start and finish times and the predecessor.
Do edge classification as well.

Order from
1st to last

Visited
vertex

Pred Start Finish

Worksheet

2

6

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / __

Edge Classification

The edge classification depends on the order in which vertices are discovered, which
depends on the order by which neighbors are visited.

49

4 6

3 5 0

2 1 4 6

3 5 0

2 1

DFS(G,0): 0, 2, 1, 5, 3, 6, 4
Visit neighbors of 3 in order: 6 and then 4

DFS(G,0): 0, 1, 2, 5, 3, 4, 6
Visit neighbors in increasing order.

Edge type
for (u,v)

Color
of v

Arrow
color (my
convention)

Comments

Tree White v is first discovered

Backward Gray There is a cycle

Forward Black Shortcut.
v is a descendant of u
v started after u started

Cross Black v is not a descendant of u
v started before u started

v started and finished
BEFORE u started

v started and
finished AFTER
u started

Edge Classification for
Undirected Graphs

• An undirected graph will only have:

– Tree edges

– Back edges

– As there is no direction on the edges (can go both ways),
what could be a forward or a cross edge will already have
been explored in the other direction, as either a backward
or a tree edge.
• Forward (u,v) => backward (v,u)

• Cross (u,v) => tree (v,u)

50

Strongly Connected Components in a Directed Graph

51

Visited vertex Pred Start Finish

Strongly_Connected_Components(G)

1. finish1= DFS(G) //Call DFS and return the vertex

finish time, finish1

2. Compute GT

3. Call DFS(GT), but in its main loop consider the vertices
in order of decreasing finish time,finish1, (i.e. in
topological order).

4. Output the vertices of each tree from line 3 as a
separate strongly connected component.

Where: GT = (V, ET) , with ET= {(v,u) : (u,v) ∈ E}

- the transpose of G: a graph with the same vertices as
G, but with edges in reverse order.

4 6

3 5 0

2 1

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / ____ / __ / ____ / __ / __

4 6

3 5 0

2 1

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / ____ / __ / ____ / __ / __

Strongly Connected Components in a Directed Graph
Worksheet 2

52

6 1

4 5 0

2 3

__ /___ ___ /___

___ /______ /___ ___ /___

___ /___ ___ /___

6 1

4 5 0

2 3

__ /___ ___ /___

___ /______ /___ ___ ___

___ /___ ___ /___

Visited vertex Start Finish Pred
Strongly_Connected_Components(G)

1. finish1= DFS(G)

2. Compute GT

3. Call DFS(GT), but in its main loop consider the vertices
in order of decreasing finish time (finish1)

4. Output the vertices of each tree from line 3 as a
separate strongly connected component.

Where: GT = (V, ET) , with ET= {(v,u) : (u,v) ∈ E}

- the transpose of G: a graph with the same vertices as
G, but with edges in reverse order.

Graph Traversal - Practice

• DFS :

53

0 1

4 5 6

2 3

0 1

4 5 6

2 3

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

• BFS :

7

7 7

Graph Traversal

• DFS traversal examples.

54

0 1

4 5 6

2 3

• BFS traversal examples:

0 1

4 5 6

2 3

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

77

7

For both DFS and BFS the resulting trees depend on the order in which neighbors are visited.

DFS Practice

55

0 1

4 5 6

2 3

Try various directions for arrows.

Extra Material – Not required
DFS – Non-Recursive

• Sedgewick , Figure 5.34, page 244

• Use a stack instead of recursion

– Visit the nodes in the same order as the recursive version.
• Put nodes on the stack in reverse order

• Mark node as visited when you start processing them from the
stack, not when you put them on the stack

• 2 versions based on what they put on the stack:

– only the vertex

– the vertex and a node reference in the adjacency list for that vertex

– Visit the nodes in different order, but still depth-first.

56

0 1

4 5 6

2 3

	Default Section
	Slide 1
	Slide 2: References and Recommended Review
	Slide 3: Graphs
	Slide 4: Graphs
	Slide 5: Directed vs Undirected Graphs
	Slide 6: Directed vs Undirected Graphs
	Slide 7: Strongly Connected Components (Directed Graphs)

	Graph representations
	Slide 8: Graph Representations
	Slide 9: Adjacency Matrix
	Slide 10: C implementation for Adjacency Matrix (Undirected graph)
	Slide 11
	Slide 12: Adjacency Lists
	Slide 13: C implementation of Adjacency Lists
	Slide 14: Adjacency Lists
	Slide 15: Adjacency Lists
	Slide 16: Check Out Posted Code
	Slide 17: Sparse Graphs

	storage saving for sparse graphs - Self study
	Slide 18: Student self study: Space Analysis: Adjacency Matrices vs. Adjacency Lists
	Slide 19: Steps for Solving This Problem: understand all terms and numbers
	Slide 20: Solving: Adjacency Matrix
	Slide 21: Solving: Adjacency List

	Graph traversal
	Slide 22: Graph Traversal / Graph Search
	Slide 23
	Slide 24: Vertex coloring while searching
	Slide 25: Breadth-First Search (BFS) CLRS 22.2
	Slide 26: Breadth-First Search (BFS) CLRS 22.2 Solution – to do
	Slide 27: Breadth-First Search (BFS):
	Slide 28: Depth-First Search (DFS) – simple version
	Slide 29: Depth-First Search (DFS) – Adj List
	Slide 30: Depth-First Search (DFS) – Adj Matrix
	Slide 31: Depth-First Search (DFS) – simple version
	Slide 32: Depth-First Search (DFS) – simple version
	Slide 33
	Slide 34: Edge Classification: tree, backward, C/F
	Slide 35: Edge Classification for Undirected Graphs

	DAG (Directed Acyclic Graphs)
	Slide 36: Topological Sorting
	Slide 37: Directed Acyclic Graphs (DAG) & Detecting Cycles in a Graph
	Slide 38: Topological Sorting - Worksheet
	Slide 39: Topological Sorting - Answer
	Slide 40: Strongly Connected Components in a Directed Graph
	Slide 41: Applications of Strongly Connected Components (SCC)

	Worksheets
	Slide 42: Directed Graphs – Adjacency Matrix - Worksheet
	Slide 43: Directed Graphs – Adjacency List - Worksheet

	Extra slides
	Slide 44: Extra Slides
	Slide 45: C implementation for Adjacency Matrix –Undirected graph
	Slide 46: DFS with time stamps
	Slide 47: Depth-First Search (DFS) (with time stamps) - CLRS
	Slide 48
	Slide 49: Edge Classification
	Slide 50: Edge Classification for Undirected Graphs
	Slide 51: Strongly Connected Components in a Directed Graph
	Slide 52: Strongly Connected Components in a Directed Graph Worksheet 2
	Slide 53: Graph Traversal - Practice
	Slide 54: Graph Traversal
	Slide 55: DFS Practice
	Slide 56: Extra Material – Not required DFS – Non-Recursive

