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References and Recommended Review

Recommended Student Review      

from CSE 2315

• Representation

– Adjacency matrix

– Adjacency lists

• Concepts: 

– vertex, edge, path, cycle, 
connected.

• Search:

– Breadth-first

– Depth-first

• Recommended: CLRS

• Graph definition and representations

– CLRS (3rd edition) -  Chapter 22.1 (pg 589)

– Sedgewick - Ch 3.7 (pg 120)

• 115-120:  2D arrays and lists

• Graph traversal

– CLRS: BFS - 22.2, DFS-22.3

– Sedgewick, Ch 5.8

• The code used in slides is from Sedgewick.

• See other links on the Code page.
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Graphs

• Graphs are representations of structures, set 
relations, and states and state-transitions. 
– Direct representation of a real-world structures

• Networks (roads, computers, social)

– States and state transitions of a problem.
• Game-playing algorithms (e.g.,  Rubik’s cube).

• Problem-solving algorithms (e.g., for automated proofs).

• For some problems you do not have the entire graph 
because it is too big. You build it as you go (based on the 
moves played in the game)

• A graph is defined as G = (V,E) where:

– V : set of vertices (or nodes).

– E : set of edges. 
• Each edge is a pair of two vertices in V: e = (v1,v2).
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Graphs
• G = (V,E)

– How many graphs are here?: 1     

– |V| = 8  ,  V: { 0, 1, 2, 3, 4, 5, 6, 7 }

– |E| = 7  , E: { (0,2), (0,6), (0, 7), (3, 4), (3, 5), (4, 5), (6,7)}.

• Paths
– Are 2 and 7 connected? Yes: paths 2-0-6-7 or 2-0-7

– Are 1 and 3 connected? No.

• Cycle
– A path from a node back to itself.

– Any cycles here?   3-5-4-3, 0-6-7-0 

• Directed / undirected   

• Connected component (in undirected graphs)
– A set of vertices s.t. for any two vertices, u and v, there is a path from u to v.

– Here: Maximal: {1}, {3,4,5}, {2,0,6,7}.  Non-maximal {0,6,7}, {3,5},…

– In directed graphs: strongly connected components.

• Degree of a vertex
– Number of edges incident to the vertex (for undirected graphs).

– Here:  degree(0) =  3,  degree(1) =  0  , degree(5) = 2

• Sparse /dense

• Representation: adjacency matrix, adjacency list 4
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undirected graph

Note: A tree is a graph that is connected and has no cycles



Directed vs Undirected Graphs
• Graphs can be directed or undirected.

• Undirected graph:   edges have no direction 

– edge (A, B) means that we can go (on that 
edge) from both A to B and B to A.

• Directed graph:    edges have direction

– edge (A, B) means that we can go (on that 
edge) from A to B, but not from B to A.

– will have both edge (A, B) and edge (B, A) if         
A and B are linked in both directions.
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directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree



Directed vs Undirected Graphs
• Graphs can be directed or undirected.

• Undirected graph:   edges have no direction 

– edge (A, B) means that we can go (on that 
edge) from both A to B and B to A.

• Directed graph:    edges have direction

– edge (A, B) means that we can go (on that 
edge) from A to B, but not from B to A.

– will have both edge (A, B) and edge (B, A) if         
A and B are linked in both directions.
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directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree 2 2 0 0 1

Out-degree 2 0 2 0 1



Strongly Connected Components
(Directed Graphs)

• How many “connected components” does this 
graph have?

1. Can you get from 0 to every other vertex?

2. Can you get from 3 to 6?

• For directed graphs we define strongly 
connected components: a subset of vertices, Vs, 
and the edges between them , Es, such that for 
any two vertices u,v in  Vs we can get from u to 
v (and from v to u) with only edges from  Es.

– Strongly connected components in this graph: 

    {0,1,4,5},  {0,4},  {1,5,4}, {0,5,4}

– NOT strongly  connected components.

    {6,2,3}, {0,1}   Why?
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Graph Representations

• G = (V,E). Let |V| = N and |E| = M. 

– |V| is the size of set V, i.e. number of vertices in the graph. Similar for |E|.

      Notation abuse: V (and E) instead of |V| (and |E|).

• Vertices: store N

– E.g.: If graph G has N=8 vertices, those vertices will be:  0, 1, 2, 3, 4, 5, 6, 7.

– Excludes case where additional labels are needed for vertices (e.g. city names).

• Edges:  2 representations:
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Adjacency matrix: 
A is a 2D matrix of size VxV

Adjacency lists: 
A is a 1D array of V linked lists

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0
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Adjacency Matrix

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0
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V vertices labelled: 0,1, . . . , V-1.
Represent edges using a 2D matrix, M, of size V*V.

M[x][y] = 1 if and only if there is an edge from x to y.
M[x][y] = 0 otherwise  (there is no edge from x to y).

- Space complexity: Θ(V2)
- Time complexity for 
add/remove/check edge: 
Θ(1) 
- Time complexity to find 
neighbors: Θ(V)

Note: the adjacency matrix of non-directed graphs is symmetric.



C implementation for 
Adjacency Matrix 

(Undirected graph )

typedef struct struct_graph * graphPT; 

struct struct_graph {

   int undirected;

   int V;

   int ** E;

};

graphPT newGraph(int V, int undirected) {

  graphPT res = malloc(sizeof(struct struct_graph));

  res->undirected = undirected;

  res->V = V;

  res->E = alloc_2d(V, V);

// the graph contains no edges (also 0 from caloc).

  for (int i = 0; i < V; i++)   

    for (int j = 0; j < V; j++)  res->E[i][j] = 0; 

  return res;

}

int edgeExists(graphPT g, int x, int y){  // Θ(1) 

   return g->E[x][y];  

}

void addEdge(graphPT g, int x, int y){    // Θ(1) 

   g->E[x][y] = 1; 

   if (g->undirected ==1)    g->E[y][x] = 1;

}

void removeEdge(graphPT g, int x, int y){  //Θ(1) 

   g->E[x][y] = 0;

   if (g->undirected ==1)    g->E[y][x] = 0;

}
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0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

void destroyGraph(graphPT g){

   if (g == NULL) return;

   free_2d(g->E, g->V, g->V);

   free(g);

}
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// the memory allocated by this function is initialized to 0

int ** alloc_2d(int rows, int columns)

{

   int row;

   // allocate space to keep a pointer for each row

   int ** table = calloc(rows , sizeof(int *));

   // VERY IMPORTANT: allocate the space for each row

   for (row = 0; row < rows; row++)

      table[row] = calloc(columns , sizeof(int));

   return table;

}

void free_2d(int ** array, int rows, int columns)  { 

   // VERY IMPORTANT: free the space for each row

   for (int row = 0; row < rows; row++)

      free(array[row]);

   // free the space with the pointer to each row.

   free(array);

}

Dynamic 2D array (allocate and free)

Draw a picture 
with the data 
representation.



Adjacency Lists
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• Represent the edges of the graph by an array of linked lists.
– Let’s name that array A

– A[x] is a list containing the neighbors of vertex x.



C implementation of Adjacency Lists
typedef struct struct_node * nodePT; 

struct struct_node{

    int data;

    nodePT next;

}

// struct_graph*  is used to hide the implementation

typedef struct struct_graph * graphPT;   

struct struct_graph{

   int undirected;

   int V;

   nodePT * E; // array of linked lists

};

//Time: Θ(deg(x)),  O(V)     Space:  Θ(1)     _

int edgeExists(graphPT g, int x, int y) {

   for(nodePt n=g->E[x]; n!=NULL; n=n->next) 

      if (n->data == y)  return 1;

   return 0;

}

//Time: Θ(deg(x)),  O(V)      Space:  Θ(1)     _

void addEdge(graphPT g, int x, int y){

   if (edgeExists(g, x, y)) return;

   g->E[x]=insert_sorted(g->E[x], NULL, new_node(y, NULL));  // insert in order

   if ((x != y) && (g->undirected == 1))   

      g->E[y]=insert_sorted(g->E[y], NULL, new_node(x, NULL));  //insert in order

}

// Similar for remove edge: iterate through lists of x and y to find the other and remove it.
13
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Adjacency Lists

G(V,E)

• Space

– for A

– For nodes:

• Time to check if an edge exists or not

– Worst case:
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• Time to add an edge?
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Adjacency Lists

G(V,E)

• Space:   Θ(E + V)

– For A: Θ(V)

– For nodes: Θ(E) 

– If the graph is relatively sparse,  E << V2, this 
can be a significant advantage.

• Time to check if an edge exists or not: O(V)

– Worst case: Θ(V). 

• Each vertex can have up to V-1 neighbors, 
and we may need to go through all of them 
to see if an edge exists.

– Slower than using adjacency matrices.
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• Time to remove an edge: O(V)

– If must check if the edge exists.

• Time to add an edge: O(V)

– If must check if the edge exists.

• Why? Because if the edge 
already exists, we should not 
duplicate it.
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Check Out Posted Code

• graph.h: defines an abstract interface for basic graph functions.

• graph_matrix.c: implements the abstract interface of graph.h, using an adjacency matrix. See also:  
twoD_arrays.h, twoD_arrays.c for a 2D matrix implemention.

• graph_list.c: also implements the abstract interface of graph.h, using adjacency lists. 

• graph_main: a test program, that can be compiled with either graph_matrix.c or graphs_list.c.
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Sparse Graphs

• If G(V,E) , max possible edges. 
– Directed:  Θ(V2)           Exact: V*(V-1)  

– Undirected : Θ(V2)       Exact:  [V*(V-1)]/2      

• Sparse graph

– A graph with  E << V2       (E  much smaller than V2 ).
– https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwi

WnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:

– E.g. consider an undirected graph with 106 nodes

• Number of edges if 20 edges per node:              106*20/2 

• Max possible edges                                                106*(106-1)/2

     => 105 factor between max possible and actual number of 
edges 

     => Use adjacency lists

– Can you think of real-world data that may be represented 
as  sparse graphs?
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https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwiWnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:
https://www.google.com/search?q=image+sparse+graph&tbm=isch&source=univ&sa=X&ved=2ahUKEwiWnLzYpubhAhVSPawKHQ0IDq8QsAR6BAgJEAE&biw=800&bih=528&dpr=2#imgrc=-4yhnsETTHLWcM:


Student self study:  Space Analysis:
Adjacency Matrices vs. Adjacency Lists

• Suppose we have an undirected graph with:

– 10 million vertices.

– Each vertex has at most 20 neighbors.

• Individual practice: Calculate the minimum space needed to store this graph 
in each representation. Use/assume:
– A matrix of BITS for the matrix representation

– An int is stored on 8 bytes and a memory address is stored on 8 bytes as well. 

Calculate the space requirement (actual number, not Θ) for each representation. 

Compare your result with the numbers below. 

Check your solution against the posted one. Clarify next lecture any questions you may have. 

• Adjacency matrices: we need at least 100 trillion bits of memory, so at least 
12.5TB of memory.

• Adjacency lists: in total, they would store at most 200 million nodes. With 16 
bytes per node (as an example), this takes at most 3.28 Gigabytes.

• We’ll see next how to compute/verify such answers.
18



Steps for Solving This Problem: 
understand all terms and numbers

• Suppose we have an undirected graph with:
– 10 million vertices. 

– Each vertex has at most 20 neighbors.

• Adjacency matrices: we need at least 100 trillion bits of 
memory, so at least 12.5TB of memory.

• Adjacency lists: in total, they would store at most 100 million 
nodes. With 16 bytes per node (as an example), this takes 3.28 
Gigabytes.

• Find ‘keywords’, understand numbers:

– 10 million vertices => 10 * 106 

– Trillion = 1012 

– 1 TB (terra bytes) = 1012 bytes

– 1GB = 109 bytes

– 100 Trillion bits vs 12.5 TB (terra bytes) 19



Solving: Adjacency Matrix
• Suppose we have a graph with:

– 10 million vertices. => V = 10*106   =107 

– Each vertex has at most 20 neighbors.

• Adjacency matrix representation for the graph: 

– The smallest possible matrix:  a 2D array of bits  =>

– The matrix size will be: V x V x 1bit  =>  

 107 * 107 * 1bit = 1014 bits

– Bits => bytes:    

1byte = 8bits => 1014bits = 1014/8 bytes = 100/8*1012bytes = 
12.5*1012bytes

– 12.5*1012bytes  = 12.5 TB (final result)

201012bytes = 1TB



Solving:  Adjacency List
• Suppose we have an undirected graph with:

– 10 million vertices. => V = 107   

– Each vertex has at most 20 neighbors.

• Adjacency lists representation of graphs: 

– For each vertex, keep a list of edges (a list of neighboring vertices)

– Space for the adjacency list array:

    = 10 million vertices*8 bytes (memory address) = 8*107 bytes = 0.08 GB 

– Space for all the nodes (from the list for each vertex):
≤ 107vertices * (20 neighbors/vertex) = 20*107 nodes = 2*108 nodes

Assume 16 bytes per node: 8 bytes for the next pointer, and 8 bytes for the 
data (vertex):

2*108 nodes * 16byte/node = 32 * 108 bytes = 3.2 * 109 bytes = 3.2GB

Total:  3.2GB + 0.08 GB = 3.28GB                         ( 109 bytes = 1GB (GigaByte) )
21



Graph Traversal / Graph Search

• We will use "graph traversal" and "graph search" almost 
interchangeably.
– However, there is a small difference:

• "Traversal": visit every node in the graph.

• "Search": visit nodes until find what we are looking for. E.g.:

– A node labeled "New York".

– A node containing integer 2014.

• Graph traversal:
– Input: start/source vertex. 

– Output: a sequence of nodes 

resulting from graph traversal.
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Depth-First Search (DFS)  -   call: DFS(G)

- O(V+E)  (when Adj list repr)

- Explores the vertices by following down a 
path as much as possible, backtracking and 
continuing from the last discovered node.

- Useful for 

• Finding and labelling strongly connected 
components (easy to implement)

• Finding cycles

• Topological sorting of DAGs (Directed Acyclic Graphs).
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Breath-First Search (BFS)  -   call: BFS(G,s)

- O(V+E)  (when Adj list repr)

- Explores vertices in the order: 
– root, (white)    (Here root = starting vertex, s)

– vertices 1 edge away from the root, (yellow)

– vertices 2 edges away from the root,  (orange)

– … and so on until all nodes are visited

- If graph is a tree, gives a level-order traversal.

- Finds shortest paths from a source vertex.

   *Length of the path is the number of edges on it.     
E.g. Flight route  with fewest connections.
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For both DFS and BFS the resulting trees depend on the order in which neighbors are visited.

Graph Traversals

Below, nodes traversed in  order: 0,   1,4,5,   6,7,   2,3



Vertex coloring while searching

• Vertices will be in one of 3 states while searching and 
we will assign a color for each state:

– White – undiscovered

– Gray – discovered, but the algorithm is not done processing it

– Black – discovered and the algorithm finished processing it.
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Breadth-First Search (BFS)
CLRS 22.2

BFS-Visit(G,s)  // search graph G starting from vertex s.   

1. For each vertex u of G  
1. color[u] = WHITE  // undiscovered
2. dist[u] = inf        // distance from s to u
3. pred[u] = NIL     // predecessor of u on the path from s to u

2. color[s] = GRAY   // s is being processed

3. dist[s] = 0
4. pred[s] = NIL
5. Initialize empty queue Q
6. put(Q,s)      // s goes to the end of Q

7. While Q is not empty
1. u = get(Q)  // removes u from the front of Q
2. For each y adjacent to u   //explore edge (u,y)  // in increasing order

1. If color[y] == WHITE
1. color[y] = GRAY
2. dist[y] = dist[u]+1
3. pred[y] = u
4. put(Q,y)

3. color[u] = BLACK

0 1

4 5 6

3 2

Aggregate time analysis: for each vertex, for each edge => 2*E=>O(E)

Representation BFS  time 
complexity

Adj LIST O(V+E)

Adj MATRIX O(V2)

Vertex Edge Distance

s

Queue, Q:

Space complexity: O(V)

Time complexity:



Breadth-First Search (BFS)
CLRS 22.2

Solution – to do
BFS-Visit(G,s)  // search graph G starting from vertex s.   

1. For each vertex u of G  
1. color[u] = WHITE  // undiscovered
2. dist[u] = inf        // distance from s to u
3. pred[u] = NIL     // predecessor of u on the path from s to u

2. color[s] = GRAY   // s is being processed

3. dist[s] = 0
4. pred[s] = NIL
5. Initialize empty queue Q
6. put(Q,s)      // s goes to the end of Q

7. While Q is not empty
1. u = get(Q)  // removes u from the front of Q
2. For each y adjacent to u   //explore edge (u,y)  // in increasing order

1. If color[y] == WHITE
1. color[y] = GRAY
2. dist[y] = dist[u]+1
3. pred[y] = u
4. put(Q,y)

3. color[u] = BLACK

0 1

4 5 6

3 2

Aggregate time analysis: for each vertex, for each edge => 2*E=>O(E)

Representation BFS  time 
complexity

Adj LIST O(V+E)

Adj MATRIX O(V2)

Vertex Edge Distance

s

Queue, Q:

Space complexity: O(V)

Time complexity:



Breadth-First Search (BFS):

Note that the code above, CLRS22.2 algorithm, assumes that you 
will only call BFS(G,s) once for s, and not attempt to find other 
connected components by calling it again for unvisited nodes.

If the graph is NOT connected, you will not reach all vertices 
when starting from s => time complexity is O, not Θ.

(I have seen variation where they restart BFS from the first unvisited node, like DFS)
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Depth-First Search (DFS) – 
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u    // explore edge (u,y)  // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred) 

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
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4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited 
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __ 

__ / __ __ / __ __ / __ 

Space complexity: O(____)

Time complexity:



Depth-First Search (DFS) – 
Adj List

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY

2. ___________________________________________________________________

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred) 

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
29
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Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited 
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __ 

__ / __ __ / __ __ / __ 

Space complexity: O(____)

Time complexity:



Depth-First Search (DFS) – 
Adj Matrix

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY

2. __________________________________________________________________

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred) 

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
30
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Representation DFS DFS-Visit(G,u)

Adj LIST

Adj MATRIX

Visited 
vertex

Pred

List:

__ / __ __ / __ __ / __ __ / __ 

__ / __ __ / __ __ / __ 

Space complexity: O(____)

Time complexity:



Depth-First Search (DFS) – 
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u    // explore edge (u,y)  // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred) 

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK

31
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Representation DFS DFS-Visit(G,u)

Adj LIST Θ(V+E) Θ(neighbors of u)

Adj MATRIX Θ(V2) Θ(V)

List:

__ / __ __ / __ __ / __ __ / __ 

__ / __ __ / __ __ / __ 

Space complexity: O(V)

Time complexity:

Visited 
vertex

Pred



Depth-First Search (DFS) – 
simple version

DFS(G)
1. For each vertex u of G

a. color[u] = WHITE
b. pred[u] = NIL

2. for (u = 0; u<G.V; u++) // for each vertex u of G
a. If color[u] == WHITE

1. DFS_visit(G, u, color, pred)

DFS_visit(G,u,color, pred)
1. color[u] = GRAY
2. For each y adjacent to u    // explore edge (u,y)  // use increasing order for neighbors

a. If color[y]==WHITE
1. pred[y] = u
2. DFS_visit(G,y, color, pred) 

b. //if color[y]==GRAY then cycle found

3. color[u] = BLACK
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4 6

3 5 0

2 1

Representation DFS DFS-Visit(G,u)

Adj LIST Θ(V+E) Θ(neighbors of u)

Adj MATRIX Θ(V2) Θ(V)

List:

__ / __ __ / __ __ / __ __ / __ 

__ / __ __ / __ __ / __ 

Space complexity: O(V)

Time complexity:

Visited 
vertex

Pred
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Edge Classification: tree, backward, C/F

We will use the labels: tree, backward, C/F and not care if C/F is a forward or a cross.

The edge classification depends on the order in which vertices are discovered, which 
depends on the order by which neighbors are visited.
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4 6

3 5 0

2 1 4 6

3 5 0

2 1

DFS(G,0): 0, 2, 1, 5, 3, 6, 4 
Visit neighbors of 3 in order: 6 and then 4

DFS(G,0): 0, 1, 2, 5, 3, 4, 6 
Visit neighbors in increasing order.

Edge type
for (u,v)

Color 
of v

Arrow 
color (my 
convention)

Comments

Tree White v is first discovered

Backward Gray There is a cycle

C/F
(Forward)

Black Shortcut.  
v is a descendant of u
v started after u started

C/F
(Cross)

Black v is not a descendant of u
v started before u started

v started and finished 
BEFORE u started

v started and 
finished AFTER 
u started



Edge Classification for 
Undirected Graphs

• An undirected graph will only have:

– Tree edges

– Back edges
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Topological Sorting
Topological sort of a directed acyclic graph (DAG), G, is a linear 
ordering of its vertices s.t. if (u,v) is an edge in G, then u will be listed 
before v (all edges point from left to right).

• If a graph has a cycle, it CANNOT have a topological sorting.

Application: 

1. Identify strongly connected components in directed graphs. 

2. Task ordering (e.g. for an assembly line)

– Vertices represent tasks

– Edge (u,v) indicates that task u must finish before task v starts.

– Topological sorting gives a feasible order for completing the tasks.

36

Algorithm version 1 (Alexandra)

1. Initialize an array, res

2. Run DFS

  - If cycle found, quit => NO topological order

  - Every time a vertex finishes, add it in res at next 
position. 

3. Reverse the array res and return it. (It will 
have the vertices listed in decreasing order of 
DFS finish time).

Algorithm version 2 (CLRS):

1. Initialize an empty linked list L.

2. Call DFS(G) with modification:

      When a vertex finishes (black) add it at the   
beginning of linked list L.

      NOTE: If a cycle is detected (backward edge), 
return null. => No topological order.

3. Return L

0 1

4 5 6

2 3

What would 
you use in Java 
for L?

Give TC for 
each version.



Directed Acyclic Graphs (DAG)
&

Detecting Cycles in a Graph

• A graph has a cycle if a DFS traversal finds a backward edge 
(an edge that points to a gray node).
– Applies to both directed and undirected graphs.

• A Directed Acyclic Graph (DAG) is a directed graph that has no 
cycles.
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0 1

4 5 6

2 3



Topological Sorting - Worksheet
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0 1

4 5 6

2 3 0 1

4 5 6

2 3

Example 2 (from previous page) Example 1

Topological order: Topological order:

• There may be more than one topological order for a DAG. 
In that case, any one of those is good.

• Red arrows show what is different from the graph in Example 1.

0 1

4 5 6

2 3

Example 3

Topological order:



Topological Sorting - Answer
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0 1

4 5 6

2 3 0 1

4 5 6

2 3

Example 2Example 1

Topological order:
   4, 0, 1, 5, 6, 2, 3
( 0, 4, 1, 5, 6, 2, 3 )

Topological order:
  6, 4, 2, 3, 0, 1, 5 
( 0, 4, 1, 6, 2, 3, 5 )
( 0, 4, 1, 6, 2, 5, 3 )

0 1

4 5 6

2 3

Example 3

Topological order: none. It has a cycle.

Simple pseudocode:

Run DFS and return time finish time data.

  - If cycle found, quit => NO topological order

Return array with vertices in reversed 
order of finish time.

• There may be more than one topological order for a DAG. 
In that case, any one of those is good.

• Red arrows show what is different from the graph in Example 1.
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4 6

3 5 0

2 1

_ _ _  _ 

_ _ _ 

4 6

3 5 0

2 1

_ _ _  _ 

_ _ _ 

Strongly Connected Components in a Directed Graph

Visited vertex Pred Finish

Strongly_Connected_Components(G)

1. finish1= DFS(G)  //Call DFS and return the vertex finish time, 

finish1 

2. Compute GT 

3. Call DFS(GT), but in its main loop consider the vertices in order 
of decreasing finish time,finish1, (i.e. in topological order).

4. Output the vertices of each tree from line 3 as a separate 
strongly connected component.

Where: GT = (V, ET) ,   with   ET= {(y,x) : (x,y) ∈ E} 

- the transpose of G: a graph with the same vertices as G, but with edges 
in reverse direction.

Finished (reverse order): 
(Every node that finishes is added at the front) Consider different list implementations (array/linked list), and the time 
complexity for them. Can you use a regular array of size N? Can you add every node that finishes at the END? 



Applications of Strongly Connected Components (SCC)

• Simplify  graph: collapse every SCC in one node

• From stackoverflow (https://stackoverflow.com/questions/11212676/what-are-strongly-connected-components-used-for)

– Model checking - “model checking is applied widely in the industry - especially for proving 
correctness of hardware components.”

– Vehicle routing applications – “A road network can be modeled as a directed graph, with 
vertices being intersections, and arcs being directed road segments or individual lanes. If the 
graph isn't Strongly Connected, then vehicles can get trapped in a certain part of the graph (i.e. 
they can get in, but not get out).”

• From Wikipedia (https://en.wikipedia.org/wiki/Strongly_connected_component)

– SCC “may be used to solve 2-satisfiability problems (systems of Boolean variables with constraints 
on the values of pairs of variables)”

• From neo4j (https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/strongly-connected-components/)  
– “In the analysis of powerful transnational corporations, SCC can be used to find the set of firms in 

which every member owns directly and/or indirectly owns shares in every other member. 
Although it has benefits, such as reducing transaction costs and increasing trust, this type of 
structure can weaken market competition.”

– “SCC can be used to compute the connectivity of different network configurations when 
measuring routing performance in multi hop wireless networks”

• “applications in cell methods for the numerical study of discrete dynamical systems” 
https://math.stackexchange.com/questions/32041/uses-of-strongly-connected-components
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https://stackoverflow.com/questions/11212676/what-are-strongly-connected-components-used-for
https://en.wikipedia.org/wiki/Strongly_connected_component
https://en.wikipedia.org/wiki/2-satisfiability
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/strongly-connected-components/
https://math.stackexchange.com/questions/32041/uses-of-strongly-connected-components


Directed Graphs – Adjacency Matrix - Worksheet
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0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree

Fill in the matrix representation. 
Use row as source and column as destination for edges. 
Update it for each edge: 
(0,2), (0,6), 
(3,4)
(7,0)
…



Directed Graphs – Adjacency List - Worksheet
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0

1

7

2

5

3

4

6

directed graph

Degree of a vertex of a directed graph:
- In-degree – number of edges arriving at this vertex
- Out-degree – number of edges leaving from this vertex

Vertex 0 4 5 1 7

In degree

Out-degree

Give the Adjacency list representation. 
Size __  array of _____________  (type of data in array)
Update it for each edge: 
(0,2), (0,6), 
(3,4)
(7,1)
…



Extra Slides
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C implementation for Adjacency Matrix –Undirected graph 

void graphCreateAndWork() {

  int N;

  scanf("%d",&N);

  int E[N][N];

  for (int i = 0; i < N; i++)   

    for (int j = 0; j < N; j++)  E[i][j] = 0; 

  // call graph function here, e.g.:

  // addEdge(N,E,1,3);

}

int edgeExists(int N, int E[][N], int v1, int v2){  

   if (v1>=N || v1<0 || v2>=N || v2<0)  return -1;

   return E[v1][v2];  

}

void addEdge(int N, int E[][N], int v1, int v2){

   if (v1>=N || v1<0 || v2>=N || v2<0)  return;

   E[v1][v2] = 1; 

   E[v2][v1] = 1;

}

void removeEdge(int N, int E[][N], int v1, int v2){

   if (v1>=N || v1<0 || v2>=N || v2<0)  return;

   E[v1][v2] = 0;

   E[v2][v1] = 0;

} 45

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

Remember that you cannot 
return, from a function, an 
array allocated on the stack 
(with [][]) . Function 
graphCreateAndWork must 
NOT return E. 

Simple version where the 
graph is represented by 
only  N and E.



DFS with time stamps

• Next, DFS with ‘time stamps’ of when a node u was first discovered (d[u]) and the time when the 
algorithm finished processing that node (finish[u]). 

• The time stamps are needed for:

– Topological sorting

– Finding strongly connected components

–  edge labeling (to distinguish between forward and cross edges)
• tree edge

• backward edge

• forward edge

• cross edge

• The following pseudo-code does not specify all the details of the implementation
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Depth-First Search (DFS)
(with time stamps) - CLRS

DFS(G)

1. For each vertex u of G

1. color[u] = WHITE

2. pred[u] = NIL

3. d[u] = -1

4. finish[u] = -1

2. time = 0

3. For (u=0;u<G.N;u++) //each vertex u of G 

1. If color[u] == WHITE  // u is in undiscovered

1. DFS_visit(G, u ,&time, color, pred, d, finish)

// Search graph G starting from vertex u. u must be WHITE

DFS_visit(G,int u, int* time, ColType*color, int* pred, int* d, int* finish)

1. (*time) = (*time) + 1     

2. d[u] = time        // time when u was discovered

3. color[u] = GRAY

4. For each v adjacent to u    // assume increasing order

1. If color[v]==WHITE      // if color[v]==GRAY=>cycle found

1. pred[v] = u

2. DFS_visit(G,v,…..) 

5. color[u] = BLACK

6. (*time) = (*time) + 1 //no two time stamps are equal.

7. finish[u] = time
47

4 6

3 5 0

2 1

Node u will be:
- WHITE before time d[u], 
- GRAY between d[u] and finish[u], 
- BLACK after finish[u]

WHITE GRAY BLACK

d[u] finish[u]

(See CLRS page 605 for step-by-step example.)

Visited 
vertex

Pred Start Finish

__ / __ / __

Representation DFS DFS-Visit(G,u)

Adj LIST Θ(|V|+|E|) Θ(neighbors of u)

Adj MATRIX Θ(|V|2) Θ(|V|)

Discover
time

Finish 
time

__ / __ / __ __ / __ / ____ / __ / __

pred

__ / __ / __ __ / __ / __ __ / __ / __

When coding you can use any 
convention to represent the 
colors: strings, chars(w/b/g), 
int (0,1,2), etc.

In the graph picture below, 
assume no answer means 
the initial values: NIL, -1,-1

Space 
complexity: 
O(V)

Time complexity:



DFS(G):   

48

0 1

4 5 7

8 3

DFS(G) (note that 0 moved) 

Convention:    
start /end
pred

Run DFS on the graphs below. Visit neighbors of u in increasing order.
For each node, write the start and finish times and the predecessor.
Do edge classification as well.

Order from 
1st to last

Visited 
vertex

Pred Start Finish

Worksheet

2

6

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / __



Edge Classification

The edge classification depends on the order in which vertices are discovered, which 
depends on the order by which neighbors are visited.
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4 6

3 5 0

2 1 4 6

3 5 0

2 1

DFS(G,0): 0, 2, 1, 5, 3, 6, 4 
Visit neighbors of 3 in order: 6 and then 4

DFS(G,0): 0, 1, 2, 5, 3, 4, 6 
Visit neighbors in increasing order.

Edge type
for (u,v)

Color 
of v

Arrow 
color (my 
convention)

Comments

Tree White v is first discovered

Backward Gray There is a cycle

Forward Black Shortcut.  
v is a descendant of u
v started after u started

Cross Black v is not a descendant of u
v started before u started

v started and finished 
BEFORE u started

v started and 
finished AFTER 
u started



Edge Classification for 
Undirected Graphs

• An undirected graph will only have:

– Tree edges

– Back edges

– As there is no direction on the edges (can go both ways), 
what could be a  forward or a cross edge will already have 
been explored in the other direction, as either a backward 
or a tree edge.
• Forward  (u,v) => backward (v,u)

• Cross (u,v) => tree (v,u)
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Strongly Connected Components in a Directed Graph

51

Visited vertex Pred Start Finish

Strongly_Connected_Components(G)

1. finish1= DFS(G)  //Call DFS and return the vertex 

finish time, finish1 

2. Compute GT 

3. Call DFS(GT), but in its main loop consider the vertices 
in order of decreasing finish time,finish1, (i.e. in 
topological order).

4. Output the vertices of each tree from line 3 as a 
separate strongly connected component.

Where: GT = (V, ET) ,   with   ET= {(v,u) : (u,v) ∈ E} 

- the transpose of G: a graph with the same vertices as 
G, but with edges in reverse order.

4 6

3 5 0

2 1

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / ____ / __ / ____ / __ / __

4 6

3 5 0

2 1

__ / __ / __ __ / __ / __ __ / __ / __ __ / __ / __

__ / __ / ____ / __ / ____ / __ / __



Strongly Connected Components in a Directed Graph
Worksheet 2
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6 1

4 5 0

2 3

__ /___ ___ /___

___ /______ /___ ___ /___

___ /___ ___ /___

6 1

4 5 0

2 3

__ /___ ___ /___

___ /______ /___ ___ ___

___ /___ ___ /___

Visited vertex Start Finish Pred
Strongly_Connected_Components(G)

1. finish1= DFS(G) 

2. Compute GT 

3. Call DFS(GT), but in its main loop consider the vertices 
in order of decreasing finish time (finish1)

4. Output the vertices of each tree from line 3 as a 
separate strongly connected component.

Where: GT = (V, ET) ,   with   ET= {(v,u) : (u,v) ∈ E} 

- the transpose of G: a graph with the same vertices as 
G, but with edges in reverse order.



Graph Traversal - Practice

• DFS :

53

0 1

4 5 6

2 3

0 1

4 5 6

2 3

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

• BFS :

7

7 7



Graph Traversal

• DFS traversal examples. 

54

0 1

4 5 6

2 3

• BFS traversal examples:

0 1

4 5 6

2 3

0 1

4 5 6

2 3

7

0 1

4 5 6

2 3

77

7

For both DFS and BFS the resulting trees depend on the order in which neighbors are visited.



DFS Practice
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0 1

4 5 6

2 3

Try various directions for arrows.



Extra Material – Not required
DFS – Non-Recursive

• Sedgewick , Figure 5.34, page 244

• Use a stack instead of recursion

– Visit the nodes in the same order as the recursive version. 
• Put nodes on the stack in reverse order

• Mark node as visited when you start processing them from the 
stack, not when you put them on the stack

• 2 versions based on what they put on the stack:

– only the vertex

– the vertex and a node reference in the adjacency list for that vertex

– Visit the nodes in different order, but still depth-first. 
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0 1

4 5 6

2 3
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