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Weighted Graphs: G,w
Each edge has a weight.

Examples:

• A transportation network (roads, 
railroads, subway). The weight of 
each road can be:
– Length.

– Expected time to travel.

– Expected cost to build.

• A computer network - the weight 
of each edge (direct link) can be:
– Latency.

– Expected cost to build.
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Problem:     find edges that connect all nodes with minimum total cost.
E.g. , you want to connect all cities to minimize highway cost, but do not care about duration to 
get from one to the other (e.g. ok if route from A to B goes through most of the other cities). 

Solution: Minimum Spanning Tree (MST)



Spanning Tree
- A spanning tree is a tree that
connects all vertices of the graph.

- The weight/cost of a spanning tree 
is the sum of weights of its edges.
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Weight:20+15+30+20+30+25+18 = 158 Weight:10+20+15+30+20+10+15 = 120

- Minimum spanning tree (MST)
• Is a Spanning Tree:  connects all vertices 

of the graph.

• Has the smallest total weight of edges.

• It is not unique:   Two different spanning 
trees may have the (same) minimum 
weight.



Minimum-Cost 
Spanning Tree (MST)

• Assume that the graph is:
– connected

– undirected

– edges can have negative 
weights.

• Warning: later in the course 
(when we discuss Dijkstra's
algorithm) we will make the 
opposite assumptions:
– Allow directed graphs.

– Not allow negative weights.
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MST using 

Prim's Algorithm

5



MST-Prim (G,w,7) 
Worksheet
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MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1   //(p[v],v) in MST and  w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)  //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

u,v,w

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and 
parent
updates 
for 
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]



MST-Prim (G,w,7) 
Solution
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MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1   //(p[v],v) in MST and  w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)  //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

u,v,w

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and 
parent
updates 
for 
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]
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u,v,w

7,4,5

7,2,9

2,6,4

4,5,11

5,0,8

0,3,15

3,1,11
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Start from ANY vertex, s. (this is an MST).

Repeat until all vertices are added to the MST:

• Add to the MST the edge (and the non-MST 
tree vertex of that edge) that is the smallest 
of all edges connecting vertices from the 
MST to vertices outside of the MST.

8 / 5

18 / 5

4 / 2

11/ 3

The p  array stores the tree. Edges: ( p(i),i )

CLRS pseudocode.

Run Prims algorithm starting 
at vertex 7.

__ / __ = d[v] / p[v] 

(p = predecessor or parent)

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting u to MST

4 p[v]=-1   //(p[v],v) in MST and  w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)  //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

MST-Prim (G,w,7) 
Answer

15 / 0

Note: picked 
edges are not 
in increasing 
order of w



• Q – is a priority queue 
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Time complexity:

Prim’s Algorithm 
Time Complexity 

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1     //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v); 
13 decreasedKeyFix(Q,v,d)  //v is neither index nor key



Prim’s Alg for Adjacency Matrix 
Graphs

(without PriorityQueue)

int MST_Prim(int ** E, int ** weights, int V, int startVertex){    

int i, k, v, minVal, minVertex, total_cost = 0;

int d[V], p[V];

int mst[V]; // records what vertices are part of the MST so far. If mst[i]==1 then i is in the MST, else it is not.

for(i=0;i<V;i++){

d[i] = INT_MAX;         p[i] = -1;        mst[i]=0;   //mst[i]=0 => i is not in the mstf

}

d[startVertex] = 0;

minVertex = startVertex;

for(k=0; k<V; k++){   // (V-1) iterations to add the remaining V-1 vertices. Assume graph is connected.

mst[minVertex] = 1; // mark that minVertex is part of the MST now

total_cost += d[minVertex];

for(v=0; v<V; v++){     // check neighbours of minVertex and update their min distances d[v] if needed

//edge (minVertex,v) exists && v NOT in MST && weight of (minVertex,v) is less than the best seen so far

if ( (E[minVertex][v]==1) && (mst[v]==0) && (d[v]>weights[minVertex][v]) ) {

d[v] = weights[minVertex][v];

p[v] = minVertex;

}

}

// find a not colored vertex of min dist

minVal = INT_MAX;

minVertex = -1; // no vertex of min distance found so far

for(v = 0; v<V; v++){

if ( (mst[v]==0) && (d[v]<minVal) ) {

minVal = d[v];

minVertex = v;

}

}

if ( minVertex==-1 && k<(V-1) ) {

printf("Graph was not connected.");

break;

}

}

return total_cost;

}
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Time: O(V2)

Space: O(V)
for d, p, mst

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0



0 1 2 3

0 0 1 1 1

1 1 0 1 1

2 1 1 0 0

3 1 1 0 0
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Time complexity: O(V2lgV)  (for adj Matrix)

b.c.: O(V + VlgV + V2lgV) 
connected graph => |E| ≥ (|V|-1)

O(V2lgV)
from lines:
7,9,13

O(V*lgV)

Prim’s Algorithm - Time Complexity – Adj Matrix

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v=0 -> N-1        --------------> O(V)
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1     //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d) ------------> O(V)   (build heap)
7 While notEmpty(Q)           ------------> O(V)
8 u = removeMin(Q,d)       ------------>    O(lgV)
9 for each v adjacent to u               //lines 7 & 9 together: ----> O(V2)
10 if v in Q and w(u,v)<d[v]          
11 p[v]=u
12 d[v] = w(u,v); 
13 decreasedKeyFix(Q,v,d)  //v is neither index nor key --------> O(lgV)

Space complexity: Θ(V) (for d,p, and Q)This TC analysis assumes :
- “v in Q” is O(1) 
- “find v in Q” is O(1) 
- Q – is a Heap

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0
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Time complexity: O(ElgV)  (for adj List)

b.c.: O(V + VlgV + E lgV) 
connected graph => |E| ≥ (|V|-1)

O(E*lgV)
from lines:
7,9,13

O(V*lgV)

Prim’s Algorithm - Time Complexity – Adj List

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v=0 -> N-1        --------------> O(V)
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1     //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d) ------------> O(V)   (build heap)
7 While notEmpty(Q)           ------------> O(V)
8 u = removeMin(Q,d)       ------------>    O(lgV)
9 for each v adjacent to u               //lines 7 & 9 together: ----> O(E)
10 if v in Q and w(u,v)<d[v]          //(touch each edge twice)

11 p[v]=u
12 d[v] = w(u,v); 
13 decreasedKeyFix(Q,v,d)  //v is neither index nor key --------> O(lgV)

This TC analysis assumes :
- “v in Q” is O(1) 
- “find v in Q” is O(1) 
- Q – is a Heap

Space complexity: Θ(V) (for d,p, and Q) 1 2 3
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• See if v is in Q.
– Θ(1) if we have the Array->Heap 

mapping. 

– Else, O(V).

– Can you use PriorityQueue in Java? 
• how? What class method will you use? 

• what time complexity do you get?

• Find heap node corresponding to v.   
– Needed to update the heap according 

to smaller d[v].

– Note the difference between v and 
node in heap corresponding to v.

– See heap slides : Index Heap Example

– how will you “implement” this if you 
are using PriorityQueue in Java ?

Prim’s Algorithm
Implementation Details

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf
4 p[v]=-1
5 d[s]=0
6 Q = PriorityQueue(G.V, d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v); 
13 decreasedKeyFix(Q,v,d)

//v is neither index nor key

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)


Other

• Variations 

– start with an empty priority queue, add vertexes newly discovered. 
• Need to know when a vertex is in the tree/in frontier/undiscovered

– For dense graphs, keep and array (instead of a priority queue => O(V2) – optimal 
for dense graphs ) – see Sedgewick if interested.

– Keep a priority queue of edges

• Make sure you understand what happens with the data in an 
implementation:

– How do you know if a vertex is still in the priority queue?

– Going from a vertex to its place in the priority queue.

– The updates to the priority queue.

14



Proof of Correctness

• Is the MST a specific type of problem?

– Optimization

• What type of method is:

– Prim’s – Greedy

– If covered:  Kruskal’s - Greedy

• Can we prove that they give the MST?  - Yes (see extra slides)

15



Prim – Example 2
Step-by-Step

16



Prim’s Alg Example 2 
step-by-step

17

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

Red - current MST 
Purple - potential edges  and vertices
Blue – unprocessed edges and vertices.
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The algorithm will keep a MIN-Priority 
Queue for the vertices.

MST-Prim(G, w, 2)     (here:  r = 2)

(This example shows the frontier 
(edges and vertices).

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf
4 p[v]=-1
5 d[s]=0
6 Q = PriorityQueue(G.V,w)
7 While notEmpty(Q)
8 u = removeMin(Q,w)  //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)
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5, 4 already in MST => (5,4,  18) not picked
(4,6,30) not better than (0,6,20) => no 6 update



Prim’s Alg Example 2 - cont

19

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25



Correctness of Prim’s Algorithm

20



Definitions
(CLRS, pg 625)

• A cut (S, V-S) of an graph is a partition of its vertices, V.

• An edge (u,v) crosses the cut (S, V-S) if one of its 
endpoints is in S and the other in V-S.

• Let A be a subset of a minimum spanning tree over G. An 
edge (u,v) is safe for A if  A    {(u,v)} is still a subset of a 
minimum spanning tree.

• A cut respects a set of edges, A, if no edge in A crosses the 
cut.

• An edge is a light edge crossing a cut if its weight is the 
minimum weight of any edge crossing the cut.

21
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Correctness of Prim and Kruskall
(CLRS, pg 625)

• Invariant for both Prim and Kruskal: At every step of the algorithm, 
the set, A, of edges is a subset of a MST. 

• Let G = (V,E) be a connected, undirected, weighted graph. Let A be a 
subset of some minimum spanning tree, T, for G, let (S, V-S) be some 
cut of G that respects A, and let (u,v) be a light edge crossing (S, V-S). 
Then, edge (u,v) is safe for A.

• Proof:

If (u,v) is part of T, done

Else, in T, u and v must be connected through another path, p. One of 
the edges of p, must connect a vertex x from A and a vertex, y, from V-A. 
Adding edge(u,v) to T will create a cycle with the path p. (x,y) also 
crosses (A, V-A) and (u,v) is light => weight(u,v) ≤ weight(x,y)  => 
weight(T’) ≤weight(T) , but T is MST => T’ also MST (where T’ is T with 
(u,v) added and (x,y) removed) and A U {(u,v)} is a subset of T’. 22
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