Minimum Spanning Trees

CSE 3318 — Algorithms and Data Structures
Alexandra Stefan
University of Texas at Arlington

These slides are based on CLRS and “Algorithms in C” by R. Sedgewick

11/16/2023

Weighted Graphs: G,w

Each edge has a weight.
Examples:

* Atransportation network (roads,
railroads, subway). The weight of
each road can be:

— Length.
— Expected time to travel.

— Expected cost to build.

* A computer network - the weight
of each edge (direct link) can be:
— Latency.
— Expected cost to build.

Problem: find edges that connect all nodes with minimum total cost.

E.g., you want to connect all cities to minimize highway cost, but do not care about duration to
get from one to the other (e.g. ok if route from A to B goes through most of the other cities).

Solution: Minimum Spanning Tree (MST)

Spanning Tree

- Minimum spanning tree (MST)

- A spanning tree is a tree that
connects all vertices of the graph.

- The weight/cost of a spanning tree
is the sum of weights of its edges.

Weight:20+15+30+20+30+25+18 = 158

Is @ Spanning Tree: connects all vertices
of the graph.

Has the smallest total weight of edges.

It is not unique: Two different spanning
trees may have the (same) minimum
weight.

Weight:10+20+15+30+20+10+15 = 120

Minimum-Cost
Spanning Tree (MST) 1

 Assume that the graph is:
— connected
— undirected

— edges can have negative
weights.

* Warning: later in the course
(when we discuss Dijkstra's
algorithm) we will make the
opposite assumptions:

— Allow directed graphs.
— Not allow negative weights.

MST using
Prim's Algorithm

MST _Prim(G,w,s) // N = |V|

intd[N], p[N] MST'Prlm (G,W,7)
rorv=0-> N1 Worksheet

1

2

3 d[v]=inf //min weight of edge connecting v to MST
4 plv]=-1 //(p[v],v)in MST and w(p[v],v) =d[v]
5 d[s]=0

6 Q = PriorityQueue(G.V,d)

7 While notEmpty(Q)

8 u = removeMin(Q,d) //uis picked

9 for each v adjacent to u

10 if vin Q and w(u,v)<d[v]

11 plv]=u

12 d[v] = w(u,v) u,v,w

13 decreasedKeyFix(Q,v,d)

Vertex 0 1 2 3 4 5 6 7

d/p d[0]/p[0] | d[1]/p[1] | d[2]/p[2] | d[31/p(3] | d[4]/p[4] | d[5]/p[5] | d[6]/p[6] | d[7]/p[7]

Work
(dist and

parent

updates
for

nodes)

MST _Prim(G,w,s) // N = |V|

int d[N], p[N] MST'Prlm (G,W,7)
Solution

1

2 Forv=0->N-1

3 d[v]=inf //min weight of edge connecting v to MST
4 plv]=-1 //(p[v],v)in MST and w(p[v],v) =d[v]
5 d[s]=0

6 Q = PriorityQueue(G.V,d)

7 While notEmpty(Q)

8 u = removeMin(Q,d) //uis picked

9 for each v adjacent to u

10 if vin Q and w(u,v)<d[v]

11 plv]=u

12 d[v] = w(u,v) u,v,w

13 decreasedKeyFix(Q,v,d)

Vertex 0 1 2 3 4 5 6 7

d/p d[0]/p[0] | d[1]/p[1] | d[2]/p[2] | d[31/p(3] | d[4]/p[4] | d[5]/p[5] | d[6]/p[6] | d[7]/p[7]

Work
(dist and

parent

updates
for

nodes)

MST _Prim(G,w,s) // N = |V|
int d[N], p[N]
Forv=0->N-1

MST-Prim (G,w,7)
Answer

d[v]=inf //min weight of edge connecting u to MST

plv]=-1 //(plv],v)in MST and w(p[v],v) =d[v]

Q = PriorityQueue(G.V,d)
While notEmpty(Q)

Start from ANY vertex, s. (this is an MST).
Repeat until all vertices are added to the MST:
 Add to the MST the edge (and the non-MST

u = removeMin(Q,d) //uis picked tree vertex of that edge) that is the smallest

1
2
3
4
5 d[s]=0
6
7
8
9

for each v adjacent to u
10 if vin Q and w(u,v)<d|[v]

11 plv]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)
CLRS pseudocode. uv,w
7,4,5
Run Prims algorithm starting
at vertex 7. 7,2,9
2,6,4
__/__=dlv]/plv]
(p = predecessor or parent) 4,5,11
5,0,8
0,3,15
3,1,11

of all edges connecting vertices from the
MST to vertices outside of the MST.

Note: picked
edges are not
in increasing
order of w

The p array stores the tree. Edges: (p(i),i)

Prim’s Algorithm
Time Complexity

* Q-—isapriority queue

MST _Prim(G,w,s) // N = |V|

int d[NJ, p[N]

Forv =0 -> N-1
d[v]=inf //min weight of edge connecting v to MST
p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]

d[s]=0

Q = PriorityQueue(G.V, d)

While notEmpty(Q)
u = removeMin(Q,d)

9 for each v adjacent to u

10 if vin Q and w(u,v)<d[v]

11 plv]=u

12 dlv] = w(u,v),

13 decreasedKeyFix(Q,v,d) //vis neither index nor key

CONOY U N WNRKR

Time complexity:

int. M'ST_Primgint E,' int ** weights, int V, int startVertex){ Pr| mls Alg for Adjacency I\/IatriX
inti, k, v, minVal, minVertex, total_cost = 0;
int d[V], p[V]; Graphs
int mst[V]; // records what vertices are part of the MST so far. If mst[i]==1 then i is in the MST, else it is not. . . .
for(i=0si<Viirt) (without PriorityQueue)
d[i] = INT_MAX; pli]l =-1; mst[i]=0; //mst[i]=0=>iis not in the mstf

}
d[startVertex] = 0; Time: O(Vz) 0 1 2 3 4 5
minVertex = startVertex; 0 01 100 1
for(k=0; k<V; k++){ //(V-1) iterations to add the remaining V-1 vertices. Assume graph is connected.
mst[minVertex] = 1; // mark that minVertex is part of the MST now Spa ce: O(V) 1100000
total_cost += d[minVertex]; 21 0 0 0 0O O
for(v=0; v<V; v++){ // check neighbours of minVertex and update their min distances d[v] if needed for d' P, mst
//edge (minVertex,v) exists && v NOT in MST && weight of (minVertex,v) is less than the best seen so far R
if ((E[minVertex][v]==1) && (mst[v]==0) && (d[v]>weights[minVertex][v])) { 4 0 0 0 1 0 1
d[v] = weights[minVertex][v]; 510 0110
p[v] = minVertex;
} 61 0 0 0 10
} 71 0 0 010

// find a not colored vertex of min dist
minVal = INT_MAX;
minVertex = -1; // no vertex of min distance found so far
for(v=0; v<V; v++){
if ((mst[v]==0) && (d[v]<minVal)) {
minVal = d[v];
minVertex = v;

}

if (minVertex==-1 && k<(V-1)) {
printf("Graph was not connected.");
break;

}

return total_cost;

O O O B O O O IRr O
O O O B O O O k=r N\

Prim’s Algorithm - Time Complexity — Adj Matrix

0
This TC analysis assumes : Space complexity: O(V) (for d,p, and Q) 00
: ":‘ll:\r(]jelr:s()?(ils)O(l) Time complexity: O(V?IgV) (for adj Matrix) ; i
. Q-isaHeap b.c.: O(V + VgV + V?IgV) .IB
connected graph => |E| > (|V]-1) B
MST _Prim(G,w,s) // N = |V| 51
1 intd[N], p[N] d
2 Forv=0->N-1 — ——-ooeeeeeee > 0OV 4
3 d[v]=inf //min weight of edge connecting v to MST
4 p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]
5 d[s]=0
6 Q = PriorityQueue(G.V, d) ------------ > 0O(V) (build heap)
7 While notEmpty(Q) ---------—-- > 0O(V)
8 u=removeMin(Qd) ------—--- > 0O(lgV) O(V*igv)
9 for each v adjacent to u //lines 7 & 9 together: ----> O(V?)
10 if vin Q and w(u,v)<d[v] o(V2lgV)
11 plvi=u from lines:
12 dlv] = w(u,v), 7913

13 decreasedKeyFix(Q,v,d) //vis neither index nor key -------- > O(lgV

O O O O O O O R R
O O O O O O O Rr N
O O B B O O O O W
R B P O B O O O N
O O O B B O O KRB WU
O O O B O O O Rr O
©O O O BR O O O B, N\

This TC analysis assumes :

Prim’s Algorithm - Time Complexity — Adj List

“vin Q" is O(1)
“find vin Q” is O(1)

Q- is a Heap b.c.: O(V + VIgV + E IgV)

connected graph => |E| > (|V]-1)

MST _Prim(G,w,s) // N = |V|

1
2
3
4
5
6
4
8
9

10
11
12
13

int d[N], p[N]

Forv=0->N-1 - > 0(V)
d[v]=inf //min weight of edge connecting v to MST
p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]

d[s]=0

Q = PriorityQueue(G.V, d) ------------ > O(V) (build heap)

While notEmpty(Q) ---------—--- > 0O(V))
u =removeMin(Q,d) - > 0(lgV) O(V*igV)

for each v adjacent to u
if vin Q and w(u,v)<d|[v] //(touch each edge twice)
plvi=u
d[v] = w(u,v);
decreasedKeyFix(Q,v,d) //vis neither index nor key

Space complexity: O(V) (for d,p, and Q)
Time complexity: O(EIgV) (for adj List)

//lines 7 & 9 together: ----> O(E)

ISR

O(E*IgV)
from lines:
7,9,13

12

Prim’s Algorithm
Implementation Details

e SeeifvisinQ.

MST _Prim(G,w,s) // N = |V|

OO NIDILANWNR

10

12
13

int d[NJ, p[N]
For v =0-> N-1
d[v]=inf
plv]=-1
d[s]=0
Q = PriorityQueue(G.V,
While notEmpty(Q)
u = removeMin{Q,d)
for each v adjacent to u
if vin Q and w(u,v)<d|[v]
plvi=u
d[v] = w(u,v);
decreasedKeyFix(Q,v,d)

//v is neither index nor key

©(1) if we have the Array->Heap
mapping.

Else, O(V).

Can you use PriorityQueue in Java?

* how? What class method will you use?

* what time complexity do you get?

* Find heap node corresponding to v.

Needed to update the heap according
to smaller d[v].

Note the difference between v and
node in heap corresponding to v.

See heap slides : Index Heap Example

how will you “implement” this if you
are using PriorityQueue in Java ?

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)

Other

* \ariations
— start with an empty priority queue, add vertexes newly discovered.

* Need to know when a vertex is in the tree/in frontier/undiscovered

— For dense graphs, keep and array (instead of a priority queue => O(V?) — optimal
for dense graphs) — see Sedgewick if interested.

— Keep a priority queue of edges

 Make sure you understand what happens with the data in an
implementation:
— How do you know if a vertex is still in the priority queue?
— Going from a vertex to its place in the priority queue.
— The updates to the priority queue.

Proof of Correctness

* |sthe MST a specific type of problem?
— Optimization

 What type of method is:
— Prim’s - Greedy

— If covered: Kruskal’s - Greedy

e Can we prove that they give the MIST? - Yes (see extra slides)

Prim — Example 2
Step-by-Step

Prim’s Alg Example 2
step-by-step
MST-Prim(G, w, 2) (here: r=2)

(This example shows the frontier
(edges and vertices).

Red - current MST
Purple - potential edges and vertices
Blue — unprocessed edges and vertices.

MST_Prim(G,w,s) // N = |V|

1 intd[N], p[N]

2 Forv=0->N-1

3 d[v]=inf

4 plv]=-1

5 d[s]=0

6 Q= PriorityQueue(G.V,w)

7 While notEmpty(Q)

8 u = removeMin(Q,w) //uis picked
9 for each v adjacent to u
10 if vin Q and w(u,v)<d|[v]
11 plv]=u

12 dfv] =w(u,v)

decreasedKeyFix(Q,v,d)

The algorithm will keep a MIN-Priority
Queue for the vertices.

17

5, 4 already in MST => (5,4, 18) not picked
(4,6,30) not better than (0,6,20) => no 6 update

18

Prim’s Alg Example 2 - cont

19

Correctness of Prim’s Algorithm

Definitions
(CLRS, pg 625)

A cut (S, V-S) of an graph is a partition of its vertices, V.

An edge (u,v) crosses the cut (S, V-S) if one of its
endpoints is in S and the other in V-S.

Let A be a subset of a minimum spanning tree over G. An
edge (u,v) is safe for A if AU {(u,v)}is still a subset of a
minimum spanning tree.

A cut respects a set of edges, A, if no edge in A crosses the
cut.

An edge is a light edge crossing a cut if its weight is the
minimum weight of any edge crossing the cut.

Correctness of Prim and Kruskall

(CLRS, pg 625)
* Invariant for both Prim and Kruskal: At every step of the algorithm,
the set, A, of edges is a subset of a MST.

e Let G=(V,E) be aconnected, undirected, weighted graph. Let A be a
subset of some minimum spanning tree, T, for G, let (S, V-S) be some
cut of G that respects A, and let (u,v) be a light edge crossing (S, V-S).
Then, edge (u,v) is safe for A.

* Proof:

If (u,v) is part of T, done

Else, in T, u and v must be connected through another path, p. One of
the edges of p, must connect a vertex x from A and a vertex, y, from V-A.
Adding edge(u,v) to T will create a cycle with the path p. (x,y) also
crosses (A, V-A) and (u,v) is light => weight(u,v) < weight(x,y) =>
weight(T’) <weight(T) , but T is MST => T also MST (where T’ is T with
(u,v) added and (x,y) removed) and A U {(u,v)}is a subset of T".

	Default Section
	Slide 1
	Slide 2: Weighted Graphs: G,w
	Slide 3: Spanning Tree
	Slide 4: Minimum-Cost Spanning Tree (MST)
	Slide 5: MST using Prim's Algorithm
	Slide 6: MST-Prim (G,w,7) Worksheet
	Slide 7: MST-Prim (G,w,7) Solution
	Slide 8
	Slide 9: Prim’s Algorithm Time Complexity
	Slide 10: Prim’s Alg for Adjacency Matrix Graphs (without PriorityQueue)
	Slide 11: Prim’s Algorithm - Time Complexity – Adj Matrix
	Slide 12: Prim’s Algorithm - Time Complexity – Adj List
	Slide 13: Prim’s Algorithm Implementation Details
	Slide 14: Other
	Slide 15: Proof of Correctness

	Example-step-by-step-graph
	Slide 16: Prim – Example 2 Step-by-Step
	Slide 17: Prim’s Alg Example 2 step-by-step
	Slide 18
	Slide 19: Prim’s Alg Example 2 - cont

	Extra-correctness of algorithm
	Slide 20: Correctness of Prim’s Algorithm
	Slide 21: Definitions (CLRS, pg 625)
	Slide 22: Correctness of Prim and Kruskall (CLRS, pg 625)

