
Minimum Spanning Trees

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

These slides are based on CLRS and “Algorithms in C” by R. Sedgewick

111/16/2023

Weighted Graphs: G,w
Each edge has a weight.

Examples:

• A transportation network (roads,
railroads, subway). The weight of
each road can be:
– Length.

– Expected time to travel.

– Expected cost to build.

• A computer network - the weight
of each edge (direct link) can be:
– Latency.

– Expected cost to build.

2

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

Problem: find edges that connect all nodes with minimum total cost.
E.g. , you want to connect all cities to minimize highway cost, but do not care about duration to
get from one to the other (e.g. ok if route from A to B goes through most of the other cities).

Solution: Minimum Spanning Tree (MST)

Spanning Tree
- A spanning tree is a tree that
connects all vertices of the graph.

- The weight/cost of a spanning tree
is the sum of weights of its edges.

3

0

1

7

2

5

3

4

6

10

20

3020

15
30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15
30

10

18

15 25

Weight:20+15+30+20+30+25+18 = 158 Weight:10+20+15+30+20+10+15 = 120

- Minimum spanning tree (MST)
• Is a Spanning Tree: connects all vertices

of the graph.

• Has the smallest total weight of edges.

• It is not unique: Two different spanning
trees may have the (same) minimum
weight.

Minimum-Cost
Spanning Tree (MST)

• Assume that the graph is:
– connected

– undirected

– edges can have negative
weights.

• Warning: later in the course
(when we discuss Dijkstra's
algorithm) we will make the
opposite assumptions:
– Allow directed graphs.

– Not allow negative weights.

4

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15

1015

MST using

Prim's Algorithm

5

MST-Prim (G,w,7)
Worksheet

6

0

1

7

2

5

3

4

6/

/
/

/

/

/

/

/

30
9

4

8

15

18

20

12

30

20

25

11

5

11

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1 //(p[v],v) in MST and w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d) //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

u,v,w

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and
parent
updates
for
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]

MST-Prim (G,w,7)
Solution

7

0

1

7

2

5

3

4

6/

/
/

/

/

/

/

/

30
9

4

8

15

18

20

12

30

20

25

11

5

11

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1 //(p[v],v) in MST and w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d) //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

u,v,w

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and
parent
updates
for
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]

8

u,v,w

7,4,5

7,2,9

2,6,4

4,5,11

5,0,8

0,3,15

3,1,11

0

1

7

2

5

3

4

6
12 / 7

11 / 4
5 / 7

25 / 4

20 /0

0 /-

9 / 7

30 / 4

30

9

4

8

15

18

20

12

30

20

25

11

5

11

Start from ANY vertex, s. (this is an MST).

Repeat until all vertices are added to the MST:

• Add to the MST the edge (and the non-MST
tree vertex of that edge) that is the smallest
of all edges connecting vertices from the
MST to vertices outside of the MST.

8 / 5

18 / 5

4 / 2

11/ 3

The p array stores the tree. Edges: (p(i),i)

CLRS pseudocode.

Run Prims algorithm starting
at vertex 7.

__ / __ = d[v] / p[v]

(p = predecessor or parent)

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v = 0 -> N-1
3 d[v]=inf //min weight of edge connecting u to MST

4 p[v]=-1 //(p[v],v) in MST and w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V,d)
7 While notEmpty(Q)
8 u = removeMin(Q,d) //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

MST-Prim (G,w,7)
Answer

15 / 0

Note: picked
edges are not
in increasing
order of w

• Q – is a priority queue

9

Time complexity:

Prim’s Algorithm
Time Complexity

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v);
13 decreasedKeyFix(Q,v,d) //v is neither index nor key

Prim’s Alg for Adjacency Matrix
Graphs

(without PriorityQueue)

int MST_Prim(int ** E, int ** weights, int V, int startVertex){

int i, k, v, minVal, minVertex, total_cost = 0;

int d[V], p[V];

int mst[V]; // records what vertices are part of the MST so far. If mst[i]==1 then i is in the MST, else it is not.

for(i=0;i<V;i++){

d[i] = INT_MAX; p[i] = -1; mst[i]=0; //mst[i]=0 => i is not in the mstf

}

d[startVertex] = 0;

minVertex = startVertex;

for(k=0; k<V; k++){ // (V-1) iterations to add the remaining V-1 vertices. Assume graph is connected.

mst[minVertex] = 1; // mark that minVertex is part of the MST now

total_cost += d[minVertex];

for(v=0; v<V; v++){ // check neighbours of minVertex and update their min distances d[v] if needed

//edge (minVertex,v) exists && v NOT in MST && weight of (minVertex,v) is less than the best seen so far

if ((E[minVertex][v]==1) && (mst[v]==0) && (d[v]>weights[minVertex][v])) {

d[v] = weights[minVertex][v];

p[v] = minVertex;

}

}

// find a not colored vertex of min dist

minVal = INT_MAX;

minVertex = -1; // no vertex of min distance found so far

for(v = 0; v<V; v++){

if ((mst[v]==0) && (d[v]<minVal)) {

minVal = d[v];

minVertex = v;

}

}

if (minVertex==-1 && k<(V-1)) {

printf("Graph was not connected.");

break;

}

}

return total_cost;

}
10

Time: O(V2)

Space: O(V)
for d, p, mst

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

0 1 2 3

0 0 1 1 1

1 1 0 1 1

2 1 1 0 0

3 1 1 0 0

11

Time complexity: O(V2lgV) (for adj Matrix)

b.c.: O(V + VlgV + V2lgV)
connected graph => |E| ≥ (|V|-1)

O(V2lgV)
from lines:
7,9,13

O(V*lgV)

Prim’s Algorithm - Time Complexity – Adj Matrix

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v=0 -> N-1 --------------> O(V)
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d) ------------> O(V) (build heap)
7 While notEmpty(Q) ------------> O(V)
8 u = removeMin(Q,d) ------------> O(lgV)
9 for each v adjacent to u //lines 7 & 9 together: ----> O(V2)
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v);
13 decreasedKeyFix(Q,v,d) //v is neither index nor key --------> O(lgV)

Space complexity: Θ(V) (for d,p, and Q)This TC analysis assumes :
- “v in Q” is O(1)
- “find v in Q” is O(1)
- Q – is a Heap

0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1 1

1 1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 1 0 1 1 1

5 1 0 0 1 1 0 0 0

6 1 0 0 0 1 0 0 0

7 1 0 0 0 1 0 0 0

12

Time complexity: O(ElgV) (for adj List)

b.c.: O(V + VlgV + E lgV)
connected graph => |E| ≥ (|V|-1)

O(E*lgV)
from lines:
7,9,13

O(V*lgV)

Prim’s Algorithm - Time Complexity – Adj List

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v=0 -> N-1 --------------> O(V)
3 d[v]=inf //min weight of edge connecting v to MST

4 p[v]=-1 //MST vertex, s.t. w(p[v],v) =d[v]

5 d[s]=0
6 Q = PriorityQueue(G.V, d) ------------> O(V) (build heap)
7 While notEmpty(Q) ------------> O(V)
8 u = removeMin(Q,d) ------------> O(lgV)
9 for each v adjacent to u //lines 7 & 9 together: ----> O(E)
10 if v in Q and w(u,v)<d[v] //(touch each edge twice)

11 p[v]=u
12 d[v] = w(u,v);
13 decreasedKeyFix(Q,v,d) //v is neither index nor key --------> O(lgV)

This TC analysis assumes :
- “v in Q” is O(1)
- “find v in Q” is O(1)
- Q – is a Heap

Space complexity: Θ(V) (for d,p, and Q) 1 2 3

0

0

0

2 3

1

1

0

1

2

3

13

• See if v is in Q.
– Θ(1) if we have the Array->Heap

mapping.

– Else, O(V).

– Can you use PriorityQueue in Java?
• how? What class method will you use?

• what time complexity do you get?

• Find heap node corresponding to v.
– Needed to update the heap according

to smaller d[v].

– Note the difference between v and
node in heap corresponding to v.

– See heap slides : Index Heap Example

– how will you “implement” this if you
are using PriorityQueue in Java ?

Prim’s Algorithm
Implementation Details

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf
4 p[v]=-1
5 d[s]=0
6 Q = PriorityQueue(G.V, d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v);
13 decreasedKeyFix(Q,v,d)

//v is neither index nor key

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/PriorityQueue.html#remove(java.lang.Object)

Other

• Variations

– start with an empty priority queue, add vertexes newly discovered.
• Need to know when a vertex is in the tree/in frontier/undiscovered

– For dense graphs, keep and array (instead of a priority queue => O(V2) – optimal
for dense graphs) – see Sedgewick if interested.

– Keep a priority queue of edges

• Make sure you understand what happens with the data in an
implementation:

– How do you know if a vertex is still in the priority queue?

– Going from a vertex to its place in the priority queue.

– The updates to the priority queue.

14

Proof of Correctness

• Is the MST a specific type of problem?

– Optimization

• What type of method is:

– Prim’s – Greedy

– If covered: Kruskal’s - Greedy

• Can we prove that they give the MST? - Yes (see extra slides)

15

Prim – Example 2
Step-by-Step

16

Prim’s Alg Example 2
step-by-step

17

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

Red - current MST
Purple - potential edges and vertices
Blue – unprocessed edges and vertices.

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

The algorithm will keep a MIN-Priority
Queue for the vertices.

MST-Prim(G, w, 2) (here: r = 2)

(This example shows the frontier
(edges and vertices).

MST_Prim(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf
4 p[v]=-1
5 d[s]=0
6 Q = PriorityQueue(G.V,w)
7 While notEmpty(Q)
8 u = removeMin(Q,w) //u is picked

9 for each v adjacent to u
10 if v in Q and w(u,v)<d[v]
11 p[v]=u
12 d[v] = w(u,v)
13 decreasedKeyFix(Q,v,d)

18

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15
30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15
30

10

18

15 25

0

1

7

2

5

3

4

6̀

10

20

3020

15
30

10

18

15 25

5, 4 already in MST => (5,4, 18) not picked
(4,6,30) not better than (0,6,20) => no 6 update

Prim’s Alg Example 2 - cont

19

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

0

1

7

2

5

3

4

6

10

20

3020

15

30

10

18

15 25

Correctness of Prim’s Algorithm

20

Definitions
(CLRS, pg 625)

• A cut (S, V-S) of an graph is a partition of its vertices, V.

• An edge (u,v) crosses the cut (S, V-S) if one of its
endpoints is in S and the other in V-S.

• Let A be a subset of a minimum spanning tree over G. An
edge (u,v) is safe for A if A {(u,v)} is still a subset of a
minimum spanning tree.

• A cut respects a set of edges, A, if no edge in A crosses the
cut.

• An edge is a light edge crossing a cut if its weight is the
minimum weight of any edge crossing the cut.

21



Correctness of Prim and Kruskall
(CLRS, pg 625)

• Invariant for both Prim and Kruskal: At every step of the algorithm,
the set, A, of edges is a subset of a MST.

• Let G = (V,E) be a connected, undirected, weighted graph. Let A be a
subset of some minimum spanning tree, T, for G, let (S, V-S) be some
cut of G that respects A, and let (u,v) be a light edge crossing (S, V-S).
Then, edge (u,v) is safe for A.

• Proof:

If (u,v) is part of T, done

Else, in T, u and v must be connected through another path, p. One of
the edges of p, must connect a vertex x from A and a vertex, y, from V-A.
Adding edge(u,v) to T will create a cycle with the path p. (x,y) also
crosses (A, V-A) and (u,v) is light => weight(u,v) ≤ weight(x,y) =>
weight(T’) ≤weight(T) , but T is MST => T’ also MST (where T’ is T with
(u,v) added and (x,y) removed) and A U {(u,v)} is a subset of T’. 22

	Default Section
	Slide 1
	Slide 2: Weighted Graphs: G,w
	Slide 3: Spanning Tree
	Slide 4: Minimum-Cost Spanning Tree (MST)
	Slide 5: MST using Prim's Algorithm
	Slide 6: MST-Prim (G,w,7) Worksheet
	Slide 7: MST-Prim (G,w,7) Solution
	Slide 8
	Slide 9: Prim’s Algorithm Time Complexity
	Slide 10: Prim’s Alg for Adjacency Matrix Graphs (without PriorityQueue)
	Slide 11: Prim’s Algorithm - Time Complexity – Adj Matrix
	Slide 12: Prim’s Algorithm - Time Complexity – Adj List
	Slide 13: Prim’s Algorithm Implementation Details
	Slide 14: Other
	Slide 15: Proof of Correctness

	Example-step-by-step-graph
	Slide 16: Prim – Example 2 Step-by-Step
	Slide 17: Prim’s Alg Example 2 step-by-step
	Slide 18
	Slide 19: Prim’s Alg Example 2 - cont

	Extra-correctness of algorithm
	Slide 20: Correctness of Prim’s Algorithm
	Slide 21: Definitions (CLRS, pg 625)
	Slide 22: Correctness of Prim and Kruskall (CLRS, pg 625)

