
Single-Source Shortest Paths

CSE 3318 – Algorithms and Data Structures

Alexandra Stefan

University of Texas at Arlington

111/16/2023

Shortest Paths

• The weight of a path is the sum of
weights of the edges that make up
the path.

• The shortest path between two
vertices s and t in a directed graph is
a directed path from s to t with the
property that no other such path has
a lower weight.

• NOTE: we want the “shortest path” in
terms of path weight, NOT number of
edges on the path.
– E.g. cheapest flight, not flight with fewest

layovers.

2

• We will consider two problems:

– Single-source: find the shortest path
from the source vertex s to all other
vertices in the graph.

• These shortest paths will form a tree,
with s as the root.

– All-pairs: find the shortest paths for all
pairs of vertices in the graph.

• Assumptions:

– Directed graphs

– Edges do NOT have negative weights.

Discussing the Assumptions

• Can Dijkstra be applied to undirected graphs as well?

– Yes: Undirected graphs are a special case of directed graphs.

• Negative edge weights are not allowed.

– The algorithm variation given here will fail to find the
shortest path for some

3

Shortest-Paths Spanning Tree

• Given a directed graph G and a designated vertex s, a
shortest-paths spanning tree (SPST) for s is a tree that
contains s and all vertices reachable from s, such that:
– Vertex s is the root of this tree. (Here s=5)

– Each tree path from s to v, is a shortest path in G from s to v.

4

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

SPST(G,5)

Dijkstra’s Algorithm

5

Add to the SPST the vertex, u, with
the shortest distance.

For each vertex, v, record the shortest
distance from s to it and the edge that
connects it (like Prim).

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v

4 p[v]=-1 //predecessor of v on path from s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v); //total weight of path from s to v through u

13 decreasedKeyFix(Q,v,d) //v is neither index nor key

Dijkstra’s Algorithm: TC and SC

Time complexity: O(ElgV)
(for adj list)

O(V + VlgV + E lgV) = O(ElgV)
Assuming V=O(E)
Space complexity: Θ(V)
(for d,p, and Q)

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1 ---------------------> Θ(V)
3 d[v]=inf //total weight from s to v

4 p[v]=-1 //predecessor of v on path from s to v

5 d[s]=0
6 Q = PriorityQueue(d) ---------------------> Θ(V)
7 While notEmpty(Q) ---------------------> O(V)
8 u = removeMin(Q,d) ---------------------> O(lgV) --> O(VlgV) (lines 7 and 8)
9 for each v adjacent to u -----------------> O(E) (from lines 7 and 9)

10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v); //total weight of path from s to v through u

13 decreasedKeyFix(Q,v,d) //v is neither index nor key ---> O(lgV) --> O(ElgV)

6

(aggregate from
both for-loop and
while-loop
Lines: 7,9,13)

Dijkstra's Algorithm

• Computes an SPST for a graph G and a source s.

• Very similar to Prim's algorithm, but:

– First vertex to add is the source, s.

– Works with directed graphs as well, whereas Prim's only works with undirected
graphs.

- Requires edge weights to be non-negative.

- It looks at the total path weight, not just the weight of the current edge.

• Time complexity(same as Prim): O(ElgV) using a heap for the priority-
queue and adjacency list for edges.

7

Dijkstra’s Algorithm: SPST(G,0)

8

0

1

4

2

3

6

5

7

10

7

15

1
20

2

1

1

10
1

8

2
1

3

7

3

Added
Vertex
, v

Edge Dis-
tance
from s
to v

Dist/parent

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v

4 p[v]=-1 //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v);
13 decreasedKeyFix(Q,v,d)

6

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and
parent
updates
for
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]

9

0

1

4

2

3

6

5

7

10

7

15

1
20

2

1

1

10
1

8

2
1

3

7

3

Added
Vertex
, v

Edge Dis-
tance
from s
to v

0 -1 0

1 (0,1) 10

4 (1,4) 11

2 (4,2) 13

3 (2,3) 14

7 (3,7) 15

5 (2,5) 16

6 (7,6) 18

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and
parent
updates
for nodes)

d[0]/p[0]

i/-1
0/-1

d[1]/p[1]

i/-1
10/0

d[2]/p[2]

i/-1
20/0
13/4

d[3]/p[3]

i/-1
15/0
14/2

d[4]/p[4]

i/-1
11/1

d[5]/p[5]

i/-1
20/1
18/4
16/2

d[6]/p[6]

i/-1
20/2
18/7

d[7]/p[7]

i/-1
15/3

Questions:
- Why not 0->3?
B.c. 14<15
- Why not
0->1->2->3 ?
B.c. no edge 1->2

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v

4 p[v]=-1 //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v);
13 decreasedKeyFix(Q,v,d)

6

Dijkstra’s Algorithm: SPST(G,0)

Shortest path 0 to 7 is recovered in reverse order: 7 <- 3 <- 2 <- 4 <- 1 <- 0 , path: 0,1,4,2,3,7

Applications

• See:

http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm

and the robot navigation

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

10

http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm
https://en.wikipedia.org/wiki/Dijkstra's_algorithm

All-Pairs Shortest Paths

• Run Dijkstra to compute the Shortest Path Spanning Tree (SPST) for each
vertex used as source.

– Note that the array of predecessors completely specifies the SPST.

11

Worked-out (SPST) Dijkstra example

• Note that this example is for an undirected graph. The same
algorithm will be applied to a directed graph (going in the
direction of the arrows).

• When moving to a new page, the last state of the graph
(bottom right) is copied first (top left).

• Purple edges – (u,v) best edge discovered so far to connect v
to the tree (u is already in the tree). Edges between nodes in
current SPST and nodes outside of it.

• Gray edges – edges discovered that do not provide a shorter
path to the vertex (discovered, but not used).

• Red edges and vertices – shortest path spanning tree (SPST)
built with Dijkstra.

12

13

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

inf
(-)

0
(-)

inf
(-)

inf
(-)

inf
(-)

inf
(-)

inf
(-)

inf
(-)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

25
(0)

40
(0)

30
(0)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

inf
(-)

12
(5)

inf
(-)

inf
(-)

inf
(-)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

40
(0)

30
(0)

15
(5)

Distance from
source (5) to
this vertex

Parent

14

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

40
(0)

25
(3)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

40
(0)

30
(0)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

26
(7)

25
(5)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

26
(7)

25
(5)

15
(5)

15

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

26
(7)

25
(5)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

26
(7)

25
(5)

15
(5)

0

1

7

2

5

3

4

6

10

20

3020

15
28

5

12

15 25

18 9

4

10

10
(5)

0
(-)

30
(0)

12
(5)

17
(4)

26
(7)

25
(5)

15
(5)

Vertex, as
added

Edge
(parent,vertex)

Distance from
source to vertex

5 - 0

0 (5,0) 10

4 (5,4) 12

3 (5,3) 15

7 (4,7) 17

1 (3,1) 25

2 (7,2) 26

6 (0,6) 30

16

0

1

7

2

5

3

4

6

10

20

3020

15
30

5

12

15 25

18 9

4

11

• Find the SPST(G,5).

Show the distance and the parent
for each vertex.

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v

4 p[v]=-1 //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v);
13 decreasedKeyFix(Q,v,d)

Dijkstra’s Algorithm

	Default Section
	Slide 1
	Slide 2: Shortest Paths
	Slide 3: Discussing the Assumptions
	Slide 4: Shortest-Paths Spanning Tree
	Slide 5: Dijkstra’s Algorithm
	Slide 6: Dijkstra’s Algorithm: TC and SC
	Slide 7: Dijkstra's Algorithm
	Slide 8: Dijkstra’s Algorithm: SPST(G,0)
	Slide 9: Dijkstra’s Algorithm: SPST(G,0)
	Slide 10: Applications

	All pairs shortest paths
	Slide 11: All-Pairs Shortest Paths

	Worked out example
	Slide 12: Worked-out (SPST) Dijkstra example
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Dijkstra’s Algorithm

