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Shortest Paths

• The weight of a path is the sum of 
weights of the edges that make up 
the path.

• The shortest path between two 
vertices s and t in a directed graph is 
a directed path from s to t with the 
property that no other such path has 
a lower weight.

• NOTE: we want the “shortest path” in 
terms of path weight, NOT number of 
edges on the path. 
– E.g. cheapest flight, not flight with fewest 

layovers.
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• We will consider two problems:

– Single-source: find the shortest path 
from the source vertex s to all other 
vertices in the graph.

• These shortest paths will form a tree, 
with s as the root.

– All-pairs: find the shortest paths for all 
pairs of vertices in the graph.

• Assumptions:

– Directed graphs

– Edges do NOT have negative weights.



Discussing the Assumptions

• Can Dijkstra be applied to undirected graphs as well?

– Yes: Undirected graphs are a special case of directed graphs.

• Negative edge weights are not allowed. 

– The algorithm variation given here will fail to find the 
shortest path for some  
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Shortest-Paths Spanning Tree

• Given a directed graph G and a designated vertex s, a 
shortest-paths spanning tree (SPST) for s is a tree that 
contains s and all vertices reachable from s, such that:
– Vertex s is the root of this tree. (Here s=5)

– Each tree path from s to v, is a shortest path in G from s to v.
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Dijkstra’s Algorithm
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Add to the SPST the vertex, u, with 
the shortest distance.

For each vertex, v, record the shortest 
distance from s to it and the edge that 
connects it (like Prim).

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v 

4 p[v]=-1     //predecessor of v on path from s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,d)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v);  //total weight of path from s to v through u

13 decreasedKeyFix(Q,v,d)  //v is neither index nor key



Dijkstra’s Algorithm: TC and SC

Time complexity: O(ElgV)
(for adj list)

O(V + VlgV + E lgV) = O(ElgV)
Assuming V=O(E)
Space complexity: Θ(V)
(for d,p, and Q)

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1      ---------------------> Θ(V)
3 d[v]=inf //total weight from s to v 

4 p[v]=-1     //predecessor of v on path from s to v

5 d[s]=0
6 Q = PriorityQueue(d) ---------------------> Θ(V)
7 While notEmpty(Q) ---------------------> O(V)
8 u = removeMin(Q,d) ---------------------> O(lgV)  --> O(VlgV) (lines 7 and 8)
9 for each v adjacent to u -----------------> O(E) (from lines 7 and 9)

10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v);  //total weight of path from s to v through u

13 decreasedKeyFix(Q,v,d)  //v is neither index nor key ---> O(lgV) --> O(ElgV)

6

(aggregate from 
both for-loop and 
while-loop
Lines: 7,9,13)



Dijkstra's Algorithm

• Computes an SPST for a graph G and a source s.

• Very similar to Prim's algorithm, but:

– First vertex to add is the source, s.

– Works with directed graphs as well, whereas Prim's only works with undirected 
graphs.

- Requires edge weights to be non-negative.

- It looks at the total path weight, not just the weight of the current edge.

• Time complexity(same as Prim): O(ElgV) using a heap for the priority-
queue and adjacency list for edges.
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Dijkstra’s Algorithm: SPST(G,0)
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Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v 

4 p[v]=-1   //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v); 
13 decreasedKeyFix(Q,v,d) 
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Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and 
parent
updates 
for 
nodes)

d[0]/p[0] d[1]/p[1] d[2]/p[2] d[3]/p[3] d[4]/p[4] d[5]/p[5] d[6]/p[6] d[7]/p[7]
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0 -1 0

1 (0,1) 10

4 (1,4) 11

2 (4,2) 13

3 (2,3) 14

7 (3,7) 15

5 (2,5) 16

6 (7,6) 18

Vertex 0 1 2 3 4 5 6 7

d/p
Work
(dist and 
parent
updates 
for nodes)

d[0]/p[0]

i/-1
0/-1

d[1]/p[1]

i/-1
10/0

d[2]/p[2]

i/-1
20/0
13/4

d[3]/p[3]

i/-1
15/0
14/2

d[4]/p[4]

i/-1
11/1

d[5]/p[5]

i/-1
20/1
18/4
16/2

d[6]/p[6]

i/-1
20/2
18/7

d[7]/p[7]

i/-1
15/3

Questions:
- Why not 0->3?
B.c. 14<15
- Why not 
0->1->2->3 ?
B.c. no edge 1->2

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v 

4 p[v]=-1   //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v); 
13 decreasedKeyFix(Q,v,d) 
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Dijkstra’s Algorithm: SPST(G,0)          

Shortest path 0 to 7 is recovered in reverse order: 7 <- 3 <- 2 <- 4 <- 1 <- 0 , path: 0,1,4,2,3,7 



Applications 

• See:

http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm

and the robot navigation

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm
https://en.wikipedia.org/wiki/Dijkstra's_algorithm


All-Pairs Shortest Paths

• Run Dijkstra to compute the Shortest Path Spanning Tree (SPST) for each 
vertex used as source.

– Note that the array of predecessors completely specifies the SPST.
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Worked-out (SPST) Dijkstra example

• Note that this example is for an undirected graph. The same 
algorithm will be applied to a directed graph (going in the 
direction of the arrows).

• When moving to a new page, the last state of the graph 
(bottom right) is copied first (top left).

• Purple edges – (u,v) best edge discovered so far to connect v 
to the tree (u is already in the tree). Edges between nodes in 
current SPST and nodes outside of it.

• Gray edges – edges discovered that do not provide a shorter 
path to the vertex (discovered, but not used).

• Red edges and vertices – shortest path spanning tree (SPST) 
built with Dijkstra.
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• Find the SPST(G,5). 

Show the distance and the parent 
for each vertex.

Dijkstra(G,w,s) // N = |V|
1 int d[N], p[N]
2 For v =0 -> N-1
3 d[v]=inf //total weight from s to v 

4 p[v]=-1   //v’s predecessor on path s to v

5 d[s]=0
6 Q = PriorityQueue(d)
7 While notEmpty(Q)
8 u = removeMin(Q,w)
9 for each v adjacent to u
10 if (d[u]+w(u,v))<d[v]
11 p[v]=u
12 d[v] = d[u]+w(u,v); 
13 decreasedKeyFix(Q,v,d) 

Dijkstra’s Algorithm
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