Single-Source Shortest Paths

CSE 3318 – Algorithms and Data Structures Alexandra Stefan University of Texas at Arlington

Shortest Paths

- The weight of a path is the sum of weights of the edges that make up the path.
- The shortest path between two vertices s and t in a directed graph is a directed path from s to t with the property that no other such path has a lower weight.
- NOTE: we want the "shortest path" in terms of path weight, NOT number of edges on the path.
 - E.g. cheapest flight, not flight with fewest layovers.

- We will consider two problems:
 - Single-source: find the shortest path from the source vertex s to all other vertices in the graph.
 - These shortest paths will form a tree, with s as the root.
 - All-pairs: find the shortest paths for all pairs of vertices in the graph.
- Assumptions:
 - Directed graphs
 - Edges do NOT have negative weights.

Discussing the Assumptions

- Can Dijkstra be applied to undirected graphs as well?
 - Yes: Undirected graphs are a special case of directed graphs.
- Negative edge weights are not allowed.
 - The algorithm variation given here will fail to find the shortest path for some

Shortest-Paths Spanning Tree

- Given a directed graph G and a designated vertex s, a shortest-paths spanning tree (SPST) for s is a tree that contains s and all vertices reachable from s, such that:
 - Vertex s is the root of this tree. (Here s=5)
 - Each tree path from s to v, is a shortest path in G from s to v.

Dijkstra's Algorithm

<i>Dijkstra(G,w,s) //</i> N = V	
1 int d[N], p[N]	
2 For v =0 -> N-1	
<i>3 d</i> [v]=inf //total weight from s to v	
4 $p[v]=-1$ //predecessor of v on path from s t	to v
5 d[s]=0	
6 Q = PriorityQueue(d)	Add to the SPST the vertex, u, with
7 While notEmpty(Q)	the shortest distance.
8 u = removeMin(Q,d)	
9 for each v adjacent to u <	For each vertex, v, record the shortest
10	distance from s to it and the edge that
11 p[v]=u	connects it (like Prim).
12	th from s to v through u
13 <i>decreasedKeyFix(Q,v,d)</i> //v is neither i	index nor key

Dijkstra's Algorithm: TC and SC

Dijkstra(G, w, s) // N = |V|*1* int *d*[*N*], *p*[*N*] 2 For v = 0 -> N - 1 ------> $\Theta(V)$ d[v]=inf //total weight from s to v p[v]=-1 //predecessor of v on path from s to v d[s]=0

Time complexity: **O(ElgV)** (for adj list) $O(V + V \lg V + E \lg V) = O(E \lg V)$ Assuming V=O(E) Space complexity: $\Theta(V)$ (for d,p, and Q)

- $Q = PriorityQueue(d) -----> \Theta(V)$ 6 While notEmpty(Q) -----> O(V) 7
- 8
- 9 for each v adjacent to u -----> O(E) (from lines 7 and 9)
- 10 *if* (d[u]+w(u,v))<d[v]
- 11 p[v]=u

3

4

5

- 12 d[v] = d[u] + w(u,v); //total weight of path from s to v through u
- decreasedKeyFix(Q,v,d) //v is neither index nor key ---> O(IgV) --> O(ElgV) 13

(aggregate from both for-loop and while-loop Lines: 7,9,13)

Dijkstra's Algorithm

- Computes an SPST for a graph G and a source s.
- Very similar to Prim's algorithm, but:
 - First vertex to add is the source, s.
 - Works with directed graphs as well, whereas Prim's only works with undirected graphs.
 - Requires edge weights to be non-negative.
 - It looks at the total path weight, not just the weight of the current edge.
- Time complexity(same as Prim): O(ElgV) using a heap for the priorityqueue and adjacency list for edges.

Dijkstra's Algorithm: SPST(G,0)											
Dijkstra(G, 1 int d[N 2 For v =	w,s) // N], p[N] 0 -> N-1	I = V					10		Added Vertex , v	Edge	Dis- tance from s to v
3 $d[v]=inf$ //total weight from s to v 1 10 10 10 10 10 10 10 10							5	0	-1	0	
4 $p[v]=-1$ //v's predecessor on path s to v 1 2 4 5 $d[s]=0$								1	(0,1)	10	
6 Q = Pri	orityQue	eue(d)					3 8		4	(1,4)	11
7 While notEmpty(Q) $0 \xrightarrow{20} 2$								2	(4,2)	13	
8 $u = removel/Iin(Q,w)$ 9 for each v adjacent to u							6	3	(2,3)	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						7	(3,7)	15			
11 $p[v]=u$							5	(2,5)	16		
12 $d[v] = d[u]+w(u,v);$ 13 $decreasedKeyFix(Q,v,d)$							-7	6	(7,6)	18	
Vertex	0	1	2	3	4	5	6	7	Que	Questions:	
d/p Work (dist and parent updates for nodes)	d[0]/p[0] i/-1 0/-1	d[1]/p[1] i/-1 10/0	d[2]/p[2] i/-1 20/0 13/4	d[3]/p[3] i/-1 15/0 14/2	d[4]/p[4] i/-1 11/1	d[5]/p[5] i/-1 20/1 18/4 16/2	d[6]/p[6] i/-1 20/2 18/7	d[7]/p[7] i/-1 15/3	- ' B.c. - W 0-> B.c.	 Why not 0 B.c. 14<15 Why not 0->1->2->3 ? B.c. no edge 1 	

Shortest path 0 to 7 is recovered in reverse order: 7 <- 3 <- 2 <- 4 <- 1 <- 0 , path: 0,1,4,2,3,7

Applications

• See:

http://www.csl.mtu.edu/cs2321/www/newLectures/30 More Dijkstra.htm and the robot navigation

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

All-Pairs Shortest Paths

- Run Dijkstra to compute the Shortest Path Spanning Tree (SPST) for each vertex used as source.
 - Note that the array of predecessors completely specifies the SPST.

Worked-out (SPST) Dijkstra example

- Note that this example is for an undirected graph. The same algorithm will be applied to a directed graph (going in the direction of the arrows).
- When moving to a new page, the last state of the graph (bottom right) is copied first (top left).
- Purple edges (u,v) best edge discovered so far to connect v to the tree (u is already in the tree). Edges between nodes in current SPST and nodes outside of it.
- Gray edges edges discovered that do not provide a shorter path to the vertex (discovered, but not used).
- Red edges and vertices shortest path spanning tree (SPST) built with Dijkstra.

Dijkstra(G, w, s) // N = |V|

1 int d[N], p[N]

2 For v =0 -> N-1

- 3 d[v]=inf //total weight from s to v
- 4 p[v]=-1 //v's predecessor on path s to v
- 5 d[s]=0
- 6 Q = PriorityQueue(d)
- 7 While notEmpty(Q)
- *9 for each v adjacent to u*
- 10 *if* (*d*[*u*]+*w*(*u*,*v*))<*d*[*v*]
- 11 p[v]=u
- 12 d[v] = d[u]+w(u,v);
- 13 decreasedKeyFix(Q,v,d)

Dijkstra's Algorithm

• Find the SPST(G,5).

Show the distance and the parent for each vertex.

