
1

Growth of functions (Ω, O, Θ, o, ω) - Solution
Last updated: 2/27/2024

P1 (MC) For all the questions below (except for the True or False questions), the answer can be none,

one, some or all of the choices. Write your answers on the LEFT side. No justification needed. (3

points each question)

a) If f(N) = O(g(N)), then f(N) = Θ(g(N)). True or False.

b) Mark all answers that are correct for this summation: 1+2+3 …+i +…+ N

A) Θ(2N) B) Ω(lg(N)*lg(N)) C) O(N) D) O(𝑁√𝑁) E) none of the these

Justification: It is Θ(N2) and N2 = Ω(lg(N)*lg(N)) => B

c) Give a function f(N) (other than N3) that is O(N3): f(N) = … N2………………………

d) Which of the following is always a correct description of the time complexity of the code below

(regardless of what someFunction does)?

A. Θ(N) B. O(N) C. Ω(N) D. O(NlgN)

Justification: See Problem P2a) for a similar problem and its justification.

int k;

for(k=1; k <= N; k++) {

 someFunction(k);

}

e) You are given the option to choose one of three algorithms with time complexities:

A. Θ(N2) B. O(N2) C. Ω(N2)

You want to choose the algorithm most likely to be the fastest (takes less time). Which one

will you choose?

Justification:

Algorithm with TC Θ(N2) will take time “exactly” proportional to N2.

Algorithm with TC O(N2) will take time at most proportional to N2. It could be N2, but it

could be less (e.g. N or NlgN).

Algorithm with TC Ω(N2) will take time at least proportional to N2. It could be N2, but it

could be more (e.g. N3 or N4lgN).

Therefore the algorithm with TC O(N2) is the only one that has a chance to take time less

than N2.

2

P2.

a) What can you tell about the time complexity of the code below (regardless of what

someFunction does)? Give a lower, upper or tight bound (using Ω, O, or Θ). Justify your

answer.

int k;

for(k=1; k <= N; k++) {

someFunction(N);

}

Ω(N) Justification:

someFct(N) has at least a constant number of instructions, but could be even be exponential in N. So

we can only say that it has Ω(1) => TC1iter(k) = Ω(1), indep , no var change, N iterations => the code

has N* Ω(1) = Ω(N)

b) What can you tell about the time complexity of the code below (regardless of what

someFunction does)? Give a lower, upper or tight bound (using Ω, O, or Θ). Justify your

answer.

int k;

for(k=1; k <= N; k++) {

return someFunction(100);

}

Θ(1) Justification:

Since someFct(100) takes a constant as an argument, whatever TC it has, it becomes a constant for

this function call (e.g. 1002), therefore

someFunction(100) has TC Θ(1) => TC1iter(k) = Θ(1), indep , no var change,

Because of the “return”, the code returns in the first iteration, therefore the for-k loop will stop after

the first iteration. => it does only 1 repetition =>

TC of code is reps * TC1iter(k) = 1 repetition * Θ(1) = Θ(1)

P3. 5N3 + N2= O(N3) True or False? Justification not needed, but provided here for your information:

The limit of f(N)/g(N) should be 0 or a constant.

lim
𝑁⟶∞

𝑓(𝑁)

𝑔(𝑁)
= lim

𝑁⟶∞

5𝑁3 + 𝑁2

𝑁3
= lim

𝑁⟶∞

5𝑁3

𝑁3
+ lim

𝑁⟶∞

𝑁2

𝑁3
= lim

𝑁⟶∞
5 + lim

𝑁⟶∞

1

𝑁
= 5 + 0 = 5

P4. 5N3 + N2= Θ(N3) True or False? Justification not needed, but provided here for your information:

The limit of f(N)/g(N)should be a non-zero constant.

3

lim
𝑁⟶∞

𝑓(𝑁)

𝑔(𝑁)
= lim

𝑁⟶∞

5𝑁3 + 𝑁2

𝑁3
= lim

𝑁⟶∞

5𝑁3

𝑁3
+ lim

𝑁⟶∞

𝑁2

𝑁3
= lim

𝑁⟶∞
5 + lim

𝑁⟶∞

1

𝑁
= 5 + 0 = 5 ≠ 0

P5. 500lgN= Θ(N) True or False? Justification not needed, but provided here for your information:

The limit of f(N)/g(N) = lim ((lgN)/N) = 0. For Theta it should have been a non-zero constant.

lim
𝑁⟶∞

𝑓(𝑁)

𝑔(𝑁)
= lim

𝑁⟶∞

𝑙𝑔𝑁

𝑁
= lim

𝑁⟶∞

𝑙𝑛𝑁
ln(𝑒)

𝑁
=

1

𝑙𝑛𝑒
lim

𝑁⟶∞

(𝑙𝑛𝑁)′

(𝑁)′
=

1

𝑙𝑛𝑒
lim

𝑁⟶∞

1
𝑁
1

=
1

𝑙𝑛𝑒
lim

𝑁⟶∞

1

𝑁
= 0

P6. Consider the function lgN + 300 . Select all options below that are also true about this function.

For example if you select O(N2), you are saying that this function is O(N2).

a. O(1) b. O(lgN) c. O(N) f. O(N2)

 e. Θ(1) f. Θ(lgN) g. Θ(N) h. Θ(N2)

 i. Ω(1) j. Ω(lgN) k. Ω(N) l. Ω(N2)

Justification:

lg(√𝑁) + 300 + lgN = Θ(lgN) because it has dominant term lgN. => f

Because it is Θ(lgN) it is also O(lgN) and Ω(lgN) => b, j

Ω(1) means at least constant growth. Our function has growth proportional to lg(N) therefore it is

true (it is correct to say) it has at least constant growth : lg(√𝑁) + 300 + lgN = Ω(1) => i

O means at most that much growth. Our function has growth proportional to lg(N) therefore it is true

(it is correct to say) it has :

at most N growth : lg(√𝑁) + 300 + lgN = O(N) => c

at most N2 growth : lg(√𝑁) + 300 + lgN = O(N2) => d

Extra problems, not part of any examination.

Extra1. Let

N
N

k

k

NT

++

+

+

=

= = 7

5
...

7

5
.

7

5

7

5

7

5
)(

210

0 . To which of the sets below

does T(N) belong?

4

A. Θ(1) (see summation slides) B. Θ(N) C. Θ (N2) D. Θ (NlgN) E. Θ (lgN)

Extra2. Given summation: 1 + 26 + 36 + … + N6 Can you solve this in terms of Θ, Ω or O ?

ANS: Yes, Θ. With Approximation by integrals we get Θ(N7):

1 + 26 + 36 + ⋯ + 𝑁6 = ∑ 𝑘6
𝑁

𝑘=1
= Θ(𝐹(𝑁) − 𝐹(1)) = Θ(𝐹(𝑁)) = Θ (

𝑁7

7
)

= Θ(𝑁7) 𝑤ℎ𝑒𝑟𝑒 𝐹(𝑁) = ∫ 𝑥6𝑑𝑥
𝑁

0

Extra3. – Hard – for math-lovers.

Suppose that f(N) > 0 for all N >= 0. Suppose that g(N) = f(N)/2 + √𝑁. For each of the following,

specify if it is "definitely true", "definitely false", or "possibly true and possibly false". Justify

your answer (using limits or other properties). If you answer "possibly true and possibly false",

provide at least one specific example of f(N) that makes the answer "true" and one specific

example of f(N) that makes the answer "false".

Look at the limit g/f (because it is easier to look at than f/g).

lim (g(N)/f(N) = lim[f(N)/2 + sqrt(N)]/f(N) = ½+lim(sqrt(N)/f(N)) This limit can be a constant or

infinity => f(N) = O(g(N)).

When lim(sqrt(N)/f(N)) is a constant they are Θ of each other (f(N) is the dominant term for

both).

When lim(sqrt(N)/f(N)) is infinity, f(N) = o(g(N)) .

a) f(N) = O(g(N)) Definitely true. Proven above.

b) f(N) = Θ(g(N))

Case for true: f(N) = sqrt(N) Limit of g/f is 3/2

Case for false: f(N) = 10 = o(5+sqrt(N)) limit of g/f is inf.

c) f(N) = Ω(g(N))

Case for true: f(N) = f(N) = sqrt(N) Limit of f/g is 2/3 (same case that makes them Θ)

Case for false: f(N) = 10 = O(5+sqrt(N))

