
Trees & Search Trees Practice

P1.

a) Could the sequence below (where 30 is the root) be a valid search in a BST for number 65?

Justify your answer. 30, 80, 60, 50, 70, 65

b) In the Binary Search Tree below do a right rotation at node 35 (rotate 35 to the right). Redraw the tree.

P2. Given the tree on the right, list the nodes in:

(The tree is NOT a BST)

Also fill in the order in which you visit the Root,

And the children (Left and Right)

1. Preorder (________, ________, ________)

2. Inorder (________, ________, ________)

3. Postorder (________, ________, ________)

23

16

35

20

47

15

4

45 50

25

8
30

9

3

2

5

8

6

3

2

7

4

4

7

5

2

1

P3. (10 points) Given an empty 2-3-4 tree, insert numbers 4, 6, 2, 8, 7, 9 in this order. In the table below, draw

the tree after each insertion.

N Tree after inserting number N N Tree after inserting number N

4

Tree after inserting 4 in an empty tree:

8

6

Above tree after inserting 6

7

2

9

P4. Given the 2-3-4 tree:

a) (4 points) Insert 80 and redraw the tree:

b) (4 points) After 80, insert 90 and redraw the tree:

4 13 54 22 30 83 87

15 40 75

4

P5. (25 points) Write a function int follow_path(link root, int * A, int F) that takes as

arguments a tree (given by the root node, root), an array, A, and a number, F, and returns the item found in the

tree, following the path given by the first F elements of A:

- if you see a 0 in A, go left in the tree;

- if you see a 1 in A go right in the tree.

Continue the same way. For the function calls below, assume that root is pointing to the root, 8, of the tree

below.

- follow_path (root, [0,1], 2) returns 3 (from root, go left, then right)

- follow_path (root, [1,0], 2) returns 4

- follow_path (root, [0,1,1,0], 2) returns 3

- follow_path (root, [1], 1) returns 5

- follow_path (root, [0,1], 0) returns 8

You can only assume that A has at least F elements in it whenever it is called.

If anything goes wrong in the function call, it should return -1.

You can use a helper function if you want. The nodes and links are defined as follows:

typedef struct node * link;

struct node{

int data;

link left;

link right;

};

a) (6 points) What special cases are there? Focus especially on cases that can crash your code. Give an

example (function call and tree) that show each special case.

b) (4 points) Fill in the time complexity of the code you wrote for part c). (If needed, you can assume the

tree has N nodes in total.)

O (____________)

c) (15 points) Write the complete code for the function. It should deal with the special cases that you

mentioned. Each line or section that deals with a special case, should clearly indicate what case it deals

with.

8
0

9 5
2

1
5

3
7

4
4

P6. (14 points) Write a function list print_reverse(link root) that takes a binary search tree

(BST) as an argument and returns a list with the items in the tree in reverse order. If it helps, you can assume

the following list functions are provided:

- list new_list() - creates and returns an empty list.

- void add(list L, int x), - adds integer x to the end of the given list, L.

You can use a helper function if you want.

The nodes and links are defined as follows. (Do not worry about how the list is represented and implemented.)
typedef struct node * link;

struct node{

int data;

link left;

link right;

};

a) (3 points) Fill in the time complexity of the code you wrote for part b). (Assume the tree has N nodes.)

O (____________)

b) (11 points) Write the complete code for the function. It should not crash. Do not use any global

variables. 3 points will be deducted if any global variable is used.

