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Graphs Practice Problems - Solutions 
P1. Graph representation – space calculation. Solve the Student Self Study problem from Graphs 

presentation: Given an undirected graph with 10 million vertices, where each vertex has exactly 20 neighbors, 

what is the space (in Bytes) needed for each of these representations: Adjacency List, Adjacency Matrix ? 

Assume these sizes: memory address 8B, integer 8B, char 1B . 

Assume:  

• a node in the adjacency list uses an int for the neighbor and a pointer for the next node. 

• the Adjacency matrix can be implemented as a 2D matrix of bits () 

(You should be able to solve such problems for other sizes, e.g. 4B for an int, or using a 2D of int for the 

adjacency table.) 

See Slides 

P2. Give one application for each graph algorithm that we studied: DFS, BFS, topological sorting, MST 

(Minimum Spanning Tree), SPST (Shortest Path Spanning Tree), all-pairs shortest paths. 

DFS used in topological sorting 

BFS, SPS, see pb 3 below, 

Topological sorting – order to take courses so prerequisites are completed before each course. 

MST – smallest total cost to build roads to connect all cities without any cycle. 

P3. a) Know usage of other data structures in graph algorithms. For each of the given data structures, list at 

least one algorithm that uses it, and explain what for (how does it benefit from using that data structure): list, 

queue, priority queue.  

b) What graph algorithms discussed in class used recursion?  

Review lectures or slides to find the answers 

P4. What graph algorithm would you use to find: 

a) cheapest flight – SPST (Dijkstra) 

b) flight with fewest stops - BFS 
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P5. The SPST(G,0) algorithm generated the arrays d and p below (they are listed as a table to ‘reuse’ the 

indexes).  

Indices 0 1 2 3 4 5 6 7 

d 0 10 13 14 11 16 18 15 

p -1 0 4 2 1 2 7 3 

 What is the shortest distance between 0 and 5? Give vertices on the shortest path from 0 to 5: 

Distance: 16        path: 0 -> 1 -> 4 -> 2 -> 5           

P6. In class we looked at the “Telephone Network” application discussed in the link below. What are the 

changes/adaptation done Dijkstra’s algorithm in order to solve this problem? 

http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm 

• What is the definition of the “distance” between 2 vertices in this case?  

• What is the distance for the source vertex? (BW(v) in their notation) 

• What type of heap is used? 

• What is the condition used to decide if the distance for a particular vertex (BW[z]) should be updated?  

See webpage 

P7. Be able to continue the work for MST and Dijkstra. E.g. Given the adjacency list, and the table that shows 

dist/parent after a few iterations, execute one more iteration. 

In this adjacency list, the first value in a node is the destination vertex and the second value is the weight of 

that edge. E.g. the first line gives edge (0,1) with weight 23 and edge (0,2) with weight 45.  

0: (1,23), (2,45) , 

1: (0,23), (2,11), (4,63) 

2: (0,45), (1,11), (3,7), (4,80) 

3: (0,50), (2,7) 

4: (1,63), (2,80) 

Index 0 1 2 3 4 

dist 23  63 11   inf 0 

    7   

Assume vertices 1 and 4 are in the MST and the distance array, dist, updated after both vertices were selected 

is shown above. Which vertex will be picked next?    2    

Update the table. (Show only the modified cells)    See last row in the above table. 

In Canvas: give the pairs (index, updatedDistance) in increasing order of the indices and with pairs separated 

by a comma. Do not put any spaces, e.g. (0,5),(1,25),(4,37)    (3,50) 

http://www.csl.mtu.edu/cs2321/www/newLectures/30_More_Dijkstra.htm
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P8. If you are given only the finish order for the vertices of an acyclic graph traversed with Depth-First Search 

(DFS), CAN you list the graph vertices in topological order? Assume there were no cycles.  

In the table below, finish for vertex 5 is 1, meaning 1 finished first, and finish of vertex 6 is 4, meaning that 6 

was the 4-th vertex to finish. 

If Yes, list the vertices in topological order. 

Yes: 2, 3, 0, 6, 4, 1, 5 

If No,  justify briefly. 

Vertex 0 1 2 3 4 5 6 

Finish 5 2 7 6 3 1 4 
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P9. Traverse the graph below in Breadth-First order, starting from vertex 2. Whenever you examine neighbors 

of a vertex, process them in increasing order of vertex number. Half the points will be lost if you visit the 

neighbors in a different order.  

Fill in the table below (the vertices, edges and the distance). 
 

 
 
 

 

 

 

 

 

 

                           Queue: 2, 0, 1, 6, 3, 7, 4, 5 

  

Order from 
 first to last 
edges added 
to the BFS 
tree 

Vertex, v, 
(in order 
visited by 
BFS) 

Edge:  u, v 
(edge that 
adds v to 
the BFS 
tree) 

Distance 
(as 
number of 
edges) 
from the 
source 

1st 2 - 0 

2nd 0 (2,0) 1 

… 1 (2,1) 1 

 6 (2,6) 1 

 3 (0,3) 2 

 7 (0,7) 2 

 4 (1,4) 2 

 5 (3,5) 3 

    

    

6
4 

0 1
7 

7
5 

2
6

4
3 

3 

5
4 
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P10. Traverse this graph with Depth First Search (DFS)  (all DFS, not just one DFS-Visit).  

a) If a vertex has more than one neighbors you must visit them in increasing order of vertex number, for 
example from node 1 you would visit the neighbors in order: 2,4,7. Half the points will be lost if you visit the 
neighbors in a different order.   

c)  Label the edges as one of these 3 categories: T (tree), B (backward), C/F. 

 

                                                                                      

 

 

 

 

 

 

 

 

 

Tree edges: (0,1),(1,2),(2,6),(1,4),(1,7) 

Backward edges: (7,0) 

C/F: (0,2),(3,0),(5,3),(4,6) 

 

 

 

 

 

 

Order from 
 first to last 

Visited 
vertex  

Pred 

1st 0 - 

2nd 1 0 

… 2 1 

 6 2 

 4 1 

 7 1 

 3 - 

 5 - 

   

   

6

4 

0 1

7 

7

5 

2

6

4

3 

3 

5

4 
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P11. Run Prim's algorithm on this graph, to produce the minimum spanning tree (MST) starting from vertex 5. 

Fill out the table below with edges in the order in which they are selected by the algorithm and added to the 

MST. For each edge list the vertices and its weight, e.g. (2,5,14) 

  
 
 
 
 
 
 

 

 

 

Fill in the dist/parent table as in class. Show if the node is in the MST tree or not. The third piece of 

information (MST) for each vertex v is either N or T, where N means the vertex is not in the MST and T means 

it is in the MST. E.g. see that in the first row we have T for vertex 5 meaning 5 is in the MST and all the other 

vertices were NOT in the MST at that point. The second row show that 6 is now in the MST.  

In case of a tie, select the smaller vertex. E.g. below, when both 0 and 2 had distance 10, vertex 0 was 

selected.  

Index 0 1 2 3 4 5 6 Vertex added 

to MST 

d/p/MST Inf/-1/N Inf/-1/N Inf/-1/N Inf/-1/N Inf/-1/N 0/-1/T Inf/-1/N 5   

  18/5/N 14/5/N    12/5/T 6   

 16/6/N 8/6/T 10/6/N  9/6/N   1   

 10/1/N   20/1/N 9/6/T   4   

 10/1/T       0   

   10/6/T     2   

    15/2/T    3  

  

Order from 
 first to last 

Edge:  
u, v, weight 

1st 5,6,12 

2nd 6,1,8 

… 6,4,9 

 1,0,10 

 6,2,10 

 2,3,15 

  

1 

3 

2 

5 

0 

6 

4 

20 

15 

30 

14 

18 8 

10 

10 

16 

12 

9 



7 

 

P12. (10 points) Run Dijkstra’s algorithm for Single Source Shortest Path (SPST) starting from vertex 1 in the 

graph below. Process neighbors of a vertex in increasing order of the vertex value. Print the vertices and their 

distance from vertex 1, in the order in which they are added to the tree. (Remember that it is looking for the 

shortest path from vertex 1 to any other vertex.) 

 
 

 

 

 

 

 

 

Fill in the dist/parent table as in class. Show if the node is in the SPST tree or not. The third piece of 

information (SPST) for each vertex v is either N or T, where N means the vertex is not in the SPST and T means 

it is in the SPST. 

Index 0 1 2 3 4 5 6 Vertex added 

to SPST 

d/p/SPST Inf/-1/N 0/-1/T Inf/-1/N Inf/-1/N Inf/-1/N Inf/-1/N Inf/-1/N 1  

 14/1/N  21/1/N 18/1/N  8/1/T 13/1/N 5   

   12/5/T     2 

    15/2/N   13/1/T 6 

 14/1/T    20/6/N   0 

    15/2/T    3 

     20/6/T   4 

 

 

 

Order from 
 first to last vertex 
added to the SPST tree 

Vertex, v, (in 
order  added 
to the SPST) 

Distance  
from vertex 1 
to vertex v. 

Pred 

1st 1 0 - 

2nd 5 8 1 

… 2 12 5 

 6 13 1 

 0 14 1 

 3 15 2 

 4 20 6 

1 3 

2 5 

0 

6 

4 

18 

3 
21 

4 

8 

13 

14 

23 

9 

10 

7 
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Extra 
P13. This is the same as problem 10, but includes start and finish times. Traverse this graph with Depth First 
Search (DFS) (start at vertex 0) and:  

a)  Fill in the start and finish times, predecessor node, pred, in the table below. Visit neighbors in increasing 
order, for example from node 1 you would visit the neighbors in order: 2,4,7.  

c)  Label the edges as one of these 3 categories: T (tree), B (backward), C/F. 

 

                                                                                      

 

 

 

 

 

 

 

 

 

Tree edges: (0,1),(1,2),(2,6),(1,4),(1,7) 

Backward edges: (7,0) 

C/F: (0,2),(3,0),(5,3),(4,6) 

 

 

 

 

 

Order from 
 first to last 

Visited 
vertex  

Start Finish Pred 

1st 0 1 12 - 

2nd 1 2 11 0 

… 2 3 6 1 

 6 4 5 2 

 4 7 8 1 

 7 9 10 1 

 3 13 14 - 

 5 15 16 - 

     

     

6

4 

0 1

7 

7

5 

2

6

4

3 

3 

5

4 


