
1

Recurrences, Master Theorem, tree and table method,
write the recurrence for recursive functions.

Conventions: When giving answers (online):

- Do NOT put any spaces in your answers

- For level TC (time complexity) give the answer in the form: number_of_nodes*1_node_TC without any spaces.

E.g. the tree for the recurrence T(n) = 4T(n/2) + cn has at level TC at level t: 4t*c(n/2t) where 4t is the number of

nodes per level and c(n/2t) is the TC of one node at level t.

P1. Given the recurrences

a. T(N) = 3*T(N/5) + N + lgN

b. T(N) = 4*T(N/2) + √𝑁

c. T(N) = 6*T(N/5) + N3

d. T(N) = 6*T(N/5) + 7

Find their Θ time complexity with the tree method. You must show the tree and fill out the table like we

did in class.

Find their Θ time complexity with the Master Theorem method.

P2. Solve the recurrence T(n) = 2T(n-3)+c, where T(n) = c for all n≤3.

P3. Can you solve the recurrence: 𝑇(𝑛) = 𝑇 (⌊
𝑛

2
⌋) + 𝑇 (⌈

𝑛

2
⌉) + 𝑐𝑛 with base cases 𝑇(𝑁) = 𝑐 𝑓𝑜𝑟 𝑁 ≤ 13 ?

Here the symbols ⌊ ⌋, ⌈ ⌉ indicate rounded and down and rounded up.

P4. (6 points) A recursive algorithm for processing arrays works as follows: it first does some processing which

takes N2 and allows it to split the array in 3 equal parts. Next the algorithm applies itself again to each one of

those smaller arrays.

If the array has 0, 1, or 2 elements the algorithm executes 5 instructions and finishes. Give the recurrence

formula (including the base case) for this algorithm.

P5 . (Exam 1, Fall 15, 002) (5 points) Is anything wrong with the following recurrence definition?

g(0) = N

g(N) = g(N-1) + c

P6. (Exam 1, Fall 15, 002)
int foo(int * array, int N){

 if (N == 0) return 0;

 int result = 0;

 int b, c;

 for (b = 0; b < N/4; b++)

 for (c = N; c > 1 ; c = c/2)

 result = result + array[b] * array[c];

 return result + foo(array, N-1);

2

}

Give the recurrence formula (including the base case).

P7. Short answer.

a) (5pts) Can you apply the master theorem for the recurrence T(n) = 4T(n-2) + cn? Justify. (E2,Fall 18)

b) (6 pts) Consider the tree for the recurrence T(n) = 4T(n/2) + cn. Fill in the answers regarding the tree for

this recurrence:

Any internal node has _____ children.

The problem size for a node on level 3 is ________ (where the root is at level 0).

The TC of a single node on level 3 is ________ (where the root is at level 0).

The last level is (if the answer involves a log, indicate the base for it) : k = ________

How many nodes will the tree have at level t ? __________

What is the Level TC at some level t? ____________

c) (5 pts) Give a recurrence formula that will result in a tree that has the last level: k = N/4

d) This problem if not covered in Fall 2020. (4 pts) Mark (with X) the correct statement about the Tree (and

table) method for solving recurrences as done in class:

_____ it computes an estimate of the time complexity (but it does not completely prove it)

_____ it computes and mathematically proves the correct answer.

e) (5 pts) Consider the recurrence: T(N) = T(N-7)+c. Assume the first applicable value for N is 0 (i.e. assume it

is never applied to negative values).

 How many base case(s) does this problem have? (2pts) : _________________

 List the values of N for the base case (3pts) : _______________________

f) T/F: 3^{log_2(N)} = N

P8. (10pts) Can you use the Master theorem to solve the recurrence: T(n) = 4T(n/2) + n ? If yes, solve it with

this method (make sure you indicate the case give the value for ε where needed and use limit theorem for

O/Θ/Ω). If no, show why you cannot use it.

T(n) = 4T(n/2) + n

3

P9. (8 pts) Write a recursive function that has the recurrence formula (for time complexity): T(N) = 2*T(N/3) +

cN and base cases: T(N) = c (for all N≤2).

P10. (30 pts) Use the tree method to compute the Θ time complexity for T(N) = 4T(N/4) + cN with

T(1) = c .

Fill in the table below and finish the computations outside of it:

Level Argument/
Problem size

Cost of one
node

Nodes per
level

Cost of whole level

0
1
2

I

k=
Leaf level.
Write k as a
function of N.

Total tree cost calculation: ……………………………………………………………….

T(N) = Θ(…………………)

Draw the tree. Show levels 0,1 and 2. (Show just a few nodes at level 2) Show the problem size T(…) as a label

next to the node and inside the node show the local cost (cost of one node) as done in class.

4

5

EXTRA: topic induction method (not covered and not required for test or quiz)

PExtra1. Use the substitution method (induction) to show that T(N) = 2T(N/2) + N3 is O(N3). Let T(0)=4.

PExtra2. CLRS 3rd edition (textbook)

a. Reminder: The book calls ‘substitution method’ what we called ‘induction method’.

b. Page 87: 4.3-1 – Consider every one of the three methods. Can you apply it? If yes, solve with

that method, if no, explain why.

c. Page 87, 4.3-7

d. page 92, 4.4-1, 4.4-2, 4.4-3 (NOT with the tree on the given recurrence. Instead, use a similar

but easier recursion, and guess it with the Master theorem or the tree and prove it with

induction).

e. page 96, 4.5-1 (This only requires Master Theorem)

