
Sorting Practice
For all sorting algorithms: Time and Space complexity. Stable? Adaptive? (Data moves)

Quick sort
QS1. (2 points) Is quick sort stable? (No justification needed.)

If yes, prove it. If no, give an example array, A, (of size 5 or less), sort it with Quick_Sort, and indicate why it is not s table.

Use the original array and the final, sorted array to base your proof (do not base your proof on a partially sorted array).

Hint: Focus on the pivot jump.

No. It is not stable. Example 1,2,6a,6b,5 after partition by 5: 1, 2, 5, 6b, 6a. (original wrong version had: 1,2,5,6a,6b)

Quicksort will be called for [1,2] and [6b, 6a], but it will not move any element (the swap will keep the pivot in the same

place).

An even shorter example is: [1,6a,6b] after partition, because of the pivot swap we get: [1,6b,6a] and the algorithm ends

([1]and [6a] are base cases).

QS2. (7 points) We make the call: int res = partition(a, 0, 6);

for each of the 2 example arrays a given in the table below. Show in the table below how the arrays look after the call

and the value returned in res. Use the partition method from Cormen.

 0 1 2 3 4 5 6 res

Original array a example 1 13 6 12 8 6 15 10
Array after partition 6 8 6 10 12 15 13 3

Original array a example 2 17 11 12 6 3 8 9
Array example 2 after partition 6 3 8 9 11 12 17 3

Merge sort
MS1. Show the array below after each call to the Merge (not Mergesort). The elements that are modified or “touched”

by merge must be shown in bold.

Index 0 1 2 3 4 5

Orig
array

15 11 12 13 17 10

 11 15 12 13 17 10

 11 12 15 13 17 10

 11 12 15 13 17 10

 11 12 15 10 13 17

 10 11 12 13 15 17

Non-comparison sorting
NCS1. (6 points) You are using count sort to sort an array of N numbers, where each number is from the range [0,M].

What is the time complexity (as Theta) of the number of data moves? (For example swapping two records requires 3

data moves.). Briefly justify your answer.

“Data” are the records in the original array, A.=> 2N moves (N to put in sorted order in the copy array and

another N to copy back into A.) => Θ(N)

NCS2. (9 points) (Radix sort)

Show how LSD radix sort sorts the following numbers in the given representation (base 10). Show the numbers after

each complete round of count sort.

Index: 0 1 2 3 4 5 6

Original
Array:

513 145 320 235 141 433 2

 320 141 2 513 433 145 235

 2 513 320 433 235 141 145
 2 141 145 235 320 433 513

NCS3. (4 points) What is the operation you do to map/scale values from range [A,B] to range [X,Y]? You can assume that

A < B and X < Y. (E.g. [47,49] -> [20,30], [5,10] -> [21,23])

𝒏𝒆𝒘 =
𝒄𝒖𝒓𝒓−𝑨

𝑩−𝑨
(𝑿 − 𝒀) + 𝑿 See slides for more details.

NCS4. (5 pts) Assume you want to use bucket sort to sort an array A, that has integers in the range [-100, 350). (i.e.

A[i]≥-100 and A[i]<350, for all valid i). You will use 50 buckets. Write the formula to find the index, bucketIdx, for the

bucket where A[i] should go.

Make sure you indicate any rounding (up or down) if necessary.

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝑛𝑥 = ⌊
𝐴[𝑖]−(−100)

350−(−100)
∗ 50⌋ where ⌊ ⌋ means rounded down

NCS5. (6 pts) Fill in the arrays to show the required processing with count sort for the data below.

 0 1 2 3 4 5 6

Original array C, Alice B, Jane A, Jane F, John A, Matt D, Sam B, Tom

Counts array after part 1 (counts of each key):

Index: 0 1 2 3 4 5
A B C D E F

Counts array: 2 2 1 1 0 1

Counts array after part 2 (after cumulative sum):

Index: 0 1 2 3 4 5
A B C D E F

Counts array: 2 4 5 6 6 7

Show the counts array and the copy array after each of the next 2 big steps of count sort as shown in slide 6 (i.e. after a

first element is placed in the copy array, and after a second element is placed in the copy array). Create columns as

needed in the tables below.

Index: 0 1 2 3 4 5
A B C D E F

Counts
array:

2 3 5 6 6 7

Counts
array:

2 3 5 5 6 7

NCS6. a) We run bucket sort (version covered in class) on the array [0.3, 0.15, 0.27, 0.8, 0.61]. How many buckets will be

created? What are the elements in each bucket? When giving the elements in a bucket, give them in SORTED order,

separated by commas and with no extra spaces. Say empty if the bucket is empty.

5 buckets.

Formula for finding the bucket: floor(elem*buckets) (e.g. floor(0.3*5) = floor(1.5)=1, floor(0.15*5)=0, etc)

Bucket[0]: 0.15

Bucket[1]: 0.27,0.3,

Bucket[2]: empty

Bucket[3]: 0.61,0.8

Bucket[4]: empty

b) What if 10 buckets were created?

Bucket[0]: empty

Bucket[1]: 0.15

Index: 0 1 2 3 4 5 6

Copy
array:

 B, Tom

Copy
array:

 B, Tom D, Sam

Bucket[2]: 0.27

Bucket[3]: 0.3

Bucket[4]: empty

Bucket[5]: empty

Bucket[6]: 0.61

Bucket[7]: empty

Bucket[8]: 0.8

Bucket[9]: empty

