
1

Sorting Practice – Count sort, Radix sort, Bucket sort - SOLUTION
Last updated: 3/16/2021

For all sorting algorithms: Time and Space complexity. Stable? Adaptive? (Data moves)

NCS1. (6 points) You are using count sort to sort an array of N numbers, where each number is from the range [0,M].

What is the time complexity (as Theta) of the number of data moves? (For example swapping two records requires 3

data moves.). Briefly justify your answer.

“Data” are the records in the original array, A.=> 2N moves (N to put in sorted order in the copy array and

another N to copy back into A.) => Θ(N)

NCS2. (9 points) (Radix sort)

Show how LSD radix sort sorts the following numbers in the given representation (base 10). Show the numbers after

each complete round of count sort.

Index: 0 1 2 3 4 5 6

Original
Array:

513 145 320 235 141 433 2

 320 141 2 513 433 145 235

 2 513 320 433 235 141 145

 2 141 145 235 320 433 513

NCS3. (4 points) What is the operation you do to map/scale values from range [A,B] to range [X,Y]? You can assume that

A < B and X < Y. (E.g. [47,49] -> [20,30], [5,10] -> [21,23])

𝒏𝒆𝒘 =
𝒄𝒖𝒓𝒓−𝑨

𝑩−𝑨
(𝒀 − 𝑿) + 𝑿 (𝒘𝒓𝒐𝒏𝒈 𝒘𝒊𝒕𝒉 𝑿 − 𝒀:

𝒄𝒖𝒓𝒓−𝑨

𝑩−𝑨
(𝑿 − 𝒀) + 𝑿) See slides for more details.

NCS4. (5 pts) Assume you want to use bucket sort to sort an array A, that has integers in the range [-100, 350]. (i.e.

A[i]≥-100 and A[i]≤350, for all valid i). You will use 50 buckets. Write the formula to find the index, bucketIdx, for the

bucket where A[i] should go.

Make sure you indicate any rounding (up or down) if necessary.

𝑏𝑢𝑐𝑘𝑒𝑡𝐼𝑑𝑥 = ⌊
𝐴[𝑖]−(−100)

1+350−(−100)
∗ 50⌋ where ⌊ ⌋ means rounded down

NCS5. (6 pts) Fill in the arrays to show the required processing with count sort for the data below.

 0 1 2 3 4 5 6

Original array C, Alice B, Jane A, Jane F, John A, Matt D, Sam B, Tom

2

Counts array after part 1 (counts of each key):

Index: 0 1 2 3 4 5
A B C D E F

Counts array: 2 2 1 1 0 1

Counts array after part 2 (after cumulative sum):

Index: 0 1 2 3 4 5
A B C D E F

Counts array: 2 4 5 6 6 7

Show the counts array and the copy array after each of the next 2 big steps of count sort as shown in slide 6 (i.e. after a

first element is placed in the copy array, and after a second element is placed in the copy array). Create columns as

needed in the tables below.

Index: 0 1 2 3 4 5
A B C D E F

Counts
array:

2 3 5 6 6 7

Counts
array:

2 3 5 5 6 7

NCS6. a) We run bucket sort (version covered in class) on the array [0.3, 0.15, 0.27, 0.8, 0.61]. How many buckets will be

created? What are the elements in each bucket? ? Here we assume the numbers in the array are in the range [0,1) and

we map these to the bucket indexes (like in the pseudocode). We do NOT use the min and max from the array.

 When giving the elements in a bucket, give them in SORTED order, separated by commas and with no extra spaces. Say

empty if the bucket is empty.

5 buckets (The default is to use as many as the number of elements in the array)

Formula for finding the bucket: floor(elem*buckets) (e.g. floor(0.3*5) = floor(1.5)=1, floor(0.15*5)=0, etc)

Bucket[0]: 0.15

Bucket[1]: 0.27,0.3,

Bucket[2]: empty

Index: 0 1 2 3 4 5 6

Copy
array:

 B, Tom

Copy
array:

 B, Tom D, Sam

3

Bucket[3]: 0.61,0.8

Bucket[4]: 0.8 empty

b) What if 10 buckets were created?

Bucket[0]: empty

Bucket[1]: 0.15

Bucket[2]: 0.27

Bucket[3]: 0.3

Bucket[4]: empty

Bucket[5]: empty

Bucket[6]: 0.61

Bucket[7]: empty

Bucket[8]: 0.8

Bucket[9]: empty

