
1

Minimal Valgrind Tutorial
By Alexandra Stefan

Last updated: 1/21/2024

This document is dedicated to using Valgrind. It assumes you know how to use one of

omega/VM/Ubuntu (to transfer files, compile code, run commands).

Valgrind is already installed on both omega and the VM from the cse13xx page.

To install it on Ubuntu run: sudo apt install valgrind

Below is a simple tutorial. For more information go to the official Valgrind page. You can start

from the Valgrind Quick Start Guide. For more information see also FAQ and the User Manual

accessible from the same page.

Run code with Valgrind
Copy the memory_errors.c file on omega or the VM and go to the location with the file.

Note that even if you have an executable that was not produced with debugging

information (i.e. was compiled without the –g flag) you can still run Valgrind, but it will not

show line numbers for errors. Simply run it with: valgrind --leak-check=yes ./myprog

Sample Valgrind reports
The report you get will have a DIFFERENT number than mine to the left of the lines (e.g. instead of the

==18931== below). That is fine. That number is irrelevant.

1. compile with the -g flag so that Valgrind will give the line number where the error was found:

gcc -g memory_errors.c

2. run with flag: --leak-check=full

2a) Run with user input:

valgrind --leak-check=full ./a.out

2b) Run with file redirection (create a file named data.txt that only has a number between 0 and 3 in it and is

in the same folder as the memory_errors.c file):

valgrind --leak-check=full ./a.out < data.txt

https://mavsuta.sharepoint.com/sites/cse13xx
https://www.valgrind.org/docs/manual/quick-start.html
https://www.valgrind.org/docs/manual/FAQ.html
https://www.valgrind.org/docs/manual/manual.html
http://ranger.uta.edu/~alex/courses/3318/resources/memory_errors.c

2

Sample GOOD Valgrind report
No errors reported by Valgrind, see: 0 errors from 0 contexts.

It is ok to have the (suppressed: 4 from 4) message.

==18931== HEAP SUMMARY:

==18931== in use at exit: 0 bytes in 0 blocks

==18931== total heap usage: 6 allocs, 6 frees, 96 bytes allocated

==18931==

==18931== All heap blocks were freed -- no leaks are possible

==18931==

==18931== For counts of detected and suppressed errors, rerun with: -v

==18931== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 4 from 4)

 Sample BAD Valgrind report 1
Report from running memory_errors.c with input 1 (calls function pointer_error()):

This program runs one of the 3 tests below at a time:

 0 - no error.

 1 - pointer error (invalid memory access)

 2 - memory leak

 3 - conditional jump depends on unitialized value

Enter your test choice (0-3): 1

==2031== Use of uninitialised value of size 8

==2031== at 0x10899E: pointer_error (memory_errors.c:70)

==2031== by 0x1088A6: main (memory_errors.c:33)

==2031==

==2031==

==2031== Process terminating with default action of signal 11 (SIGSEGV)

==2031== Bad permissions for mapped region at address 0x1086F0

==2031== at 0x10899E: pointer_error (memory_errors.c:70)

==2031== by 0x1088A6: main (memory_errors.c:33)

==2031==

==2031== HEAP SUMMARY:

==2031== in use at exit: 0 bytes in 0 blocks

==2031== total heap usage: 2 allocs, 2 frees, 2,048 bytes allocated

==2031==

==2031== All heap blocks were freed -- no leaks are possible

==2031==

==2031== Use --track-origins=yes to see where uninitialised values come

from

==2031== For lists of detected and suppressed errors, rerun with: -s

==2031== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Segmentation fault (core dumped)

Sample BAD Valgrind report 2
Report from running memory_errors.c with input 2 (calls function mem_leak_error()):

Started...

Commented [SA1]: The uninitialized value is the pointer
value (size of a pointer is 8 bytes)

Commented [SA2]: Bad memory access.

Commented [SA3]: See function name and line number
that generated the error.

Commented [SA4]: Even though there are no leaks, there
is still a memory related error (accessing a memory location
that was not ours).

Commented [SA5]: This indicates that this program has
an error.

3

This program runs one of the 3 tests below at a time:

 0 - no error.

 1 - pointer error (invalid memory access)

 2 - memory leak

 3 - conditional jump depends on unitialized value

Enter your test choice (0-3): 2

Finished...

==2043==

==2043== HEAP SUMMARY:

==2043== in use at exit: 40 bytes in 1 blocks

==2043== total heap usage: 3 allocs, 2 frees, 2,088 bytes allocated

==2043==

==2043== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==2043== at 0x4C2FECB: malloc (vg_replace_malloc.c:307)

==2043== by 0x1089D8: mem_leak_error (memory_errors.c:78)

==2043== by 0x1088BA: main (memory_errors.c:36)

==2043==

==2043== LEAK SUMMARY:

==2043== definitely lost: 40 bytes in 1 blocks

==2043== indirectly lost: 0 bytes in 0 blocks

==2043== possibly lost: 0 bytes in 0 blocks

==2043== still reachable: 0 bytes in 0 blocks

==2043== suppressed: 0 bytes in 0 blocks

==2043==

==2043== For lists of detected and suppressed errors, rerun with: -s

==2043== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Sample BAD Valgrind report 3
Report from running memory_errors.c with input 3 (calls function cond_jump_error()):

Started...

This program runs one of the 3 tests below at a time:

 0 - no error.

 1 - pointer error (invalid memory access)

 2 - memory leak

 3 - conditional jump depends on unitialized value

Enter your test choice (0-3): 3

==2047== Conditional jump or move depends on uninitialised value(s)

==2047== at 0x1089F0: cond_jump_error (memory_errors.c:85)

==2047== by 0x1088CE: main (memory_errors.c:39)

==2047==

n is 0

Finished...

==2047==

==2047== HEAP SUMMARY:

==2047== in use at exit: 0 bytes in 0 blocks

==2047== total heap usage: 2 allocs, 2 frees, 2,048 bytes allocated

==2047==

==2047== All heap blocks were freed -- no leaks are possible

==2047==

Commented [SA6]: Function and line number of the line
that allocated the memory that was not freed.

Commented [SA7]: Line that caused the error:
double *arr = malloc(5 * sizeof(double));
size of double is 8 bytes
The 40 bytes lost are from 5 x 8 bytes (we allocated space
for 5 doubles).

Commented [SA8]: Some condition (from an if/while/for
instruction) depends on a value that was not initialized.

Commented [SA9]: Line 85 has code:
if (n==0) {
where n was not initialized.

4

==2047== Use --track-origins=yes to see where uninitialised values come

from

==2047== For lists of detected and suppressed errors, rerun with: -s

==2047== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Note the suggested flag: “Use --track-origins=yes to see where uninitialised values
come from”

If you rerun with it:

valgrind --leak-check=full --track-origins=yes ./a.out

It will show that the unitialized value is on the stack:

…

==2050== Conditional jump or move depends on uninitialised value(s)

==2050== at 0x1089F0: cond_jump_error (memory_errors.c:85)

==2050== by 0x1088CE: main (memory_errors.c:39)

==2050== Uninitialised value was created by a stack allocation

==2050== at 0x1089E4: cond_jump_error (memory_errors.c:83)

…

Sample error message 4: invalid write
Sample Valgrind report of invalid memory access. The program attempts to write past the

allocated space. It only checks this for dynamically allocated data (on the heap), bt not for

arrays allocated on the stack.

==9814== Invalid write of size 1

==9814== at 0x804841E: main (example2.c:6)

==9814== Address 0x1BA3607A is 0 bytes after a block of size 10 alloc'd

data.txt (link)
1

Practice:
What causes this program to have a memory leak: fileread_test.c, fileread_data.txt?

fileread_data.txt (link)
a un, uno, una[Article]

aardvark cerdo hormiguero

ab prefijo que indica separacio/n

aback hacia atras

abacterial abacteriano, sin bacterias

abacus a/baco

http://ranger.uta.edu/~alex/courses/3318/resources/data.txt
http://ranger.uta.edu/~alex/courses/3318/resources/fileread_test.c
http://ranger.uta.edu/~alex/courses/3318/resources/fileread_data.txt
http://ranger.uta.edu/~alex/courses/3318/resources/fileread_data.txt

5

fileread_test.c (link)
/*

 When you run this program with Valgrind, you will find a memory leak.

 What is the cause of this leak?

 */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void read_file(char* fname);

int main(int argc, char** argv) {

 read_file("fileread_data.txt");

 return (EXIT_SUCCESS);

}

void read_file(char* fname) {

 FILE * fp = fopen(fname, "r");

 if (fp == NULL) {

 return;

 }

 size_t len = 0;

 char * buffer = (char*) malloc(1001 * sizeof (char));

 int count = 0;

 size_t read;

 while ((read = getline(&buffer, &len, fp)) != -1) {

 printf("buffer = %s\n", buffer);

 }

 fclose(fp);

 free(buffer);

}

http://ranger.uta.edu/~alex/courses/3318/resources/fileread_test.c

