Base Conversion (4)
Radix Multiply Method
- Used to convert fractions.
- Underlying theory:
- (NF)A = b-1B-1 + b-2B-2 + … + b-mB-m (1.5)
Here, (NF)A is a fraction in base A and bi’s are the digits of (NF)B in base A.
- B ´ NF = B ´ (b-1B-1 + b-2B-2 + … + b-mB-m )
= (Integer I-1: b-1) + (Fraction F-2: b-2B-1 + … + b-mB-(m-1))
- In general, (bi)A is the integer part I-i, of the product of F-(i+1) ´ (BA).
- Conversion Procedure
1. Let F-1 = (NF)A.
2. Compute digits (b-i)A, for i = 1 … m, by multiplying Fi by (B)A,
producing integer I-i, which represents (b-i)A, and fraction F-(i+1).
3. Convert each digits (b-i)A to base B.