
Design and Analysis of Algorithms Date: 02-17-2008

Page | 1

Design and Analysis of Algorithms

PART III

 Dinesh Kullangal Sridhara
Pavan Gururaj Muddebihal

Counting Sort

Most of the algorithms cannot do better than O(nlogn). This algorithm assumes that each
input element is in the range 0 to k for some integer k. The basic idea is to determine for
each input element x, the number of elements less than x. This information is used to
place the element x directly into its position in the output array.

Totally three arrays are involved.
-Input Array A[1….n]
-Sorted output array B[1…n]
-Temporary working array C[1…n].

For Ex. Consider the following Input array A.

A[1..8]

1 2 3 4 5 6 7 8
2 5 3 0 2 3 0 3

First the temporary array C is built as below such that each element C[i] contains the
number of elements equal to i. Size of the array C is chosen based on the maximum
element in A. [k=5]

For j 1 to length[A]
 Do C[A[j]] C[A[j]] + 1

C[0..5]

0 1 2 3 4 5
2 0 2 3 0 1

C[0]=2 there are 2 elements in A having value 0 i.e A[4],A[7].

Design and Analysis of Algorithms Date: 02-17-2008

Page | 2

C[1]=0 there are no elements in A having value 1.
C[2]=2 there are 2 elements in A having value 2 i.e A[1],A[5].
C[3]=3 there are 3 elements in A having value 3 i.e A[3],A[6],A[8].
C[4]=0 there are no elements in A having value 4
C[5]=1 there is 1 element in A having value 5 i.e A[2].

Next C is reconstructed such that C[i] now contains the number of elements less than or
equal to i.

For i 1 to k
 Do C[i] C[i]+C[i+1]

C[0..5]

0 1 2 3 4 5
2 2 4 7 7 8

C[0]=2 there are 2 elements in A less than or equal to 0 .
C[1]=2 there are 2 elements in A less than or equal to 1.
C[2]=4 there are 4 elements in A less than or equal to 2
C[3]=7 there are 7 elements in A less than or equal to 3.
C[4]=7 there are 7 elements in A less than or equal to 4.
C[5]=8 there is 8 element in A less than or equal to 5.

Finally every element of A is placed in its right position in the final sorted array B and we
decrement the respective array value in C.

For j length[A] downto 1
 Do B[C[A[j]]]->A[j]
 C[A[j]] C[A[j]] - 1

A[8]=3 is placed at B[7] because the number of elements less than or equal to 3 is 7.i.e
C[3]=7.

B[1..8]

1 2 3 4 5 6 7 8
 3

Design and Analysis of Algorithms Date: 02-17-2008

Page | 3

Then decrement C[3].[7-1=6]

C[0..5]
0 1 2 3 4 5
2 2 4 6 7 8

Now A[7]=0 is placed at B[2] because number of elements less than or equal to 0 is 2
c[0]=2.

B[1..8]
1 2 3 4 5 6 7 8
 0 3

Then decrement C[0].[2-1=1.]
C[0..5]
0 1 2 3 4 5
1 2 4 6 7 8

This is process is continued which gives us the final sorted array.
B[1..8]
1 2 3 4 5 6 7 8
0 0 2 2 3 3 3 5

Running time

The overall time taken is Θ(k+n) as there are 2 for loops taking Θ(k) time and 2 for loops
taking Θ(n) time.
Counting sort is usually used when k=O(n) which gives a running time of Θ(n).

Radix Sort

Radix sort algorithm is used by the card sorting machines. Radix sort does sorting on the
least significant digit first. The cards are then combined into a single deck with the cards
in the 0 bin preceding the cards in the 1 bin preceding the cards in the 2 bin and so on.
Then the entire deck is sorted again on the second least significant digit and recombined
in the like manner. The process continues until the cards have been sorted on all d digits.
At that point cards are fully sorted on the d digit number. D passes through the deck are
required to sort. Following shows the operation of the radix sort on a deck of seven 3
digit numbers.

Design and Analysis of Algorithms Date: 02-17-2008

Page | 4

329 720 720
457 355 329
657 436 436
839 457 839
436 Sort the last column first. 657 Sort the middle column 355
720 329 457
355 839 657

After sorting the 1st column we get the sorted array.

329
355
436
457
657
720
839

Design and Analysis of Algorithms Date: 02-17-2008

Page | 5

Hoare partition correctness

Hoare is the original partition algorithm, developed by T. Hoare. [P7.1 page 159]

Concept

Given an array,

• Two pointers are used, one pointing to the beginning of the array and the other pointing
to the end of the array.

• The left pointer is moved to the right unless an element larger than the pivot is found.
• The right pointer is moved to the left unless an element smaller than the pivot element is

found.
• The two elements pointed by the two the pointers are swapped.
• The procedure is repeated.
• The end condition for the procedure is that the two pointers meet each other.

Example

Input array A[] = 2 8 7 1 6 5 3 4
Pivot Selection = 4
Left Pointer P points to 2
Right Pointer Q points to 4

 2 P 8 7 1 6 5 3 4 Q Left Positioned
 2 P 8 7 1 6 5 3 Q 4 Right Positioned
 2 P 3 7 1 6 5 8 Q 4 After Swap
 2 3 P 7 1 6 5 8 Q 4 Left Positioned
 2 3 P 7 1Q 6 5 8 4 Right Positioned
 2 3 P 1 7Q 6 5 8 4 After Swap
 2 3 1 P 7Q 6 5 8 4 Left Positioned
 2 3 1 P Q7 6 5 8 4 Pointers Collided
 2 3 1 P Q4 6 5 8 7 Pivot Positioned

Output: 2 3 1 < 4 > 6 5 8 7

Design and Analysis of Algorithms Date: 02-17-2008

Page | 6

Pseudo Code

Hoare-partition (A, p, r)

x A[p]
i p - 1
j r + 1
while TRUE
 do repeat j j - 1
 until A[j] <= x
 repeat i i + 1
 until A[i] >= x
 if i < j
 then exchange A[i] A[j]
 else return j

Analysis:

• The analysis for Hoare partition is similar to the partition implementation using two
pointers starting from same side.

• Number of comparisons is N, the number of elements.
• The number of exchanges is the same as the original implementation.
• Worst case � (n^2).
• Expected case is � (nlogn)

The decision-tree Model

A decision tree is a full binary tree representing the comparisons between elements performed by
a particular sorting algorithm operating on an input of a given size.

Example Decision Tree

Consider the relation <= and >. The notation i:j represents the comparison between elements Ai
and Aj. Relation used: If Ai <= Aj then move left else move right

Design and Analysis of Algorithms Date: 02-17-2008

Page | 7

The decision tree for above mentioned conditions is given below

Such a tree with outcomes as leaves and decisions as internal nodes may be constructed for an
algorithm and a specific value of n [the number of inputs]

Observations

• Worst case number of comparisons for a given comparison sort algorithm = Height of
decision tree

• Any comparison sort algorithm requires Ω (nlogn) comparisons in the worst time
• Since there must be !n leaves, the minimum height of decision tree for sorting n keys is Ω

(log(!n)) = Ω (nlogn).

