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Abstract 

This article provides an introductory summary to the formulation and application of 

exponential random graph models for social networks. The possible ties among nodes of 

a network are regarded as random variables, and assumptions about dependencies 

among these random tie variables determine the general form of the exponential random 

graph model for the network.  Examples of different dependence assumptions and their 

associated models are given, including Bernoulli, dyad-independent and Markov 

random graph models.  The incorporation of actor attributes in social selection models is 

also reviewed.  Newer, more complex dependence assumptions are briefly outlined.  

Estimation procedures are discussed, including new methods for Monte Carlo maximum 

likelihood estimation. We foreshadow the discussion taken up in other papers in this 

special edition: that the homogeneous Markov random graph models of Frank and 

Strauss (1986) are not appropriate for many observed networks, whereas the new model 

specifications of Snijders, Pattison, Robins and Handcock (2006) offer substantial 

improvement. 
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In recent years, there has been growing interest in exponential random graph 

models for social networks, commonly called the p* class of models (Frank & Strauss, 

1986; Pattison & Wasserman, 1999; Robins, Pattison & Wasserman, 1999; Wasserman 

& Pattison, 1996).  These probability models for networks on a given set of actors allow 

generalization beyond the restrictive dyadic independence assumption of the earlier p1 

model class (Holland & Leinhardt, 1981).  Accordingly, they permit models to be built 

from a more realistic construal of the structural foundations of social behavior.  The 

usefulness of these models as vehicles for examining multi-level and multi-theoretical 

hypotheses has been emphasized (e.g., Contractor, Wasserman & Faust, in press).  

There have been a number of major theoretical and technical developments since 

Anderson, Wasserman and Crouch (1999) presented their well-known primer on p* 

models. We summarize these advances in this paper. In particular, we consider it 

important to ground these models conceptually in their derivation from dependence 

assumptions, as the underlying basis of a model is then made explicit and more readily 

linked with hypotheses about (unobserved) social processes underlying network 

formation. It is through such an approach that new models can be developed in a 

principled way, including models that incorporate actor attributes. Recent developments 

in model specification and estimation need to be noted, as do new technical steps 

regarding setting structures and partial dependence assumptions that not only expand 

the class of models but have important conceptual implications.  In particular, we now 

have a much better understanding of the properties of Markov random graphs, and 

promising new specifications have been proposed to overcome some of their 

deficiencies. 

This article describes the models and summarizes current methodological 

developments with an extended conceptual exposition. (More technical recent 

summaries are given by Wasserman & Robins, 2005; Robins & Pattison, 2005; and 

Snijders, Pattison, Robins & Handcock, 2006.)  We begin by briefly describing the 

rationale for analyzing social networks with statistical models (section 1). We then 

provide an overview of the underlying logic of exponential random graph models and 

outline our general framework for model construction (section 2). In section 3, we 

discuss the important concept of a dependence assumption at the heart of the modeling 

approach.  In section 4, we present a range of different dependence assumptions and 

models. For model estimation (section 5), we briefly summarize the pseudo-likelihood 

estimation (PLE) approach, and review recent developments in Monte Carlo Markov 
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Chain maximum likelihood estimation techniques. In section 6, we present a short 

example of fitting a model to network data. In conclusion, we note the importance of the 

new model specifications that are the focus of attention in other papers in this special 

edition. 

 

1. Why model social networks?  

There are many well-known techniques that measure properties of a network, of 

the nodes, or of subsets of nodes (e.g., density, centrality, cohesive subsets.) These 

techniques serve valuable purposes in describing and understanding network features 

that might bear on particular research questions. Why, then, might we want to go 

beyond these techniques and search for a well-fitting model of an observed social 

network, and in particular a statistical model? Reasons for doing so include the 

following: 

(1) Social behavior is complex, and stochastic models allow us to capture both the 

regularities in the processes giving rise to network ties while at the same time 

recognizing that there is variability that we are unlikely to be able to model in 

detail.  Moreover, as Watts (1999) has cogently demonstrated, “adding” a small 

amount of randomness to an otherwise regular process can dramatically alter the 

properties of the possible outcomes of that process.  It is therefore important to 

allow for stochasticity if we believe that it best reflects the processes we aim to 

model.  Perhaps most importantly, a well-specified stochastic model allows us to 

understand the uncertainty associated with observed outcomes: we can learn about 

the distribution of possible outcomes for a given specification of a model, or we 

can estimate, for given observed data, the parameters of the hypothesized model 

from which the data may have been generated (and also obtain quantitative 

estimates of the uncertainty associated with estimation).   

(2) Statistical models also allow inferences about whether certain network sub-

structures – often represented in the model by one or a small number of parameters 

–  are more commonly observed in the network than might be expected by chance.  

We can then develop hypotheses about the social processes that might produce 

these structural properties. 

(3) Sometimes, different social processes may make similar qualitative predictions 

about network structures and it is only through careful quantitative modeling that 
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the differences in predictions can be evaluated.  For instance, clustering in networks 

might emerge from endogenous (self-organizing) structural effects (e.g. structural 

balance), or through node-level effects (e.g. homophily). To decide between the 

two alternatives requires a model that incorporates both effects and then assesses 

the relative contribution of each. 

(4) The more complex the network data structure, the more useful properly 

formulated models can be in achieving efficient representation. It is notable that 

there are a variety of deterministic approaches for analyzing single binary networks, 

but many of these are not appropriate, or are too complex, for more complicated 

data. To understand network evolution (Snijders, 2001) or multiple network 

structures (Lazega & Pattison, 1999), models can be of great value. 

(5)  Several longstanding questions in social network analysis relate to the puzzle of 

how localized social processes and structures combine to form global network 

patterns, and of whether such localized processes are sufficient to explain global 

network properties.  It is difficult to investigate such questions without a model, as 

in all except rather simple cases the global outcomes resulting from the 

combinations of many small-scale structures are not immediately obvious, even 

qualitatively. With good locally-specified models for social networks, it may be 

possible to traverse this micro-macro gap, often through simulation.  

We particularly emphasize the value of developing plausible models that are 

estimable from data and hence empirically grounded. There are many models in the 

network literature that are important tools for simulation, hypothesis generation, and 

“thought experiments”.  But our principal goal is to estimate model parameters from 

data and then evaluate how adequately the model represents the data.  These 

complementary approaches serve useful but different purposes, with the distinctive 

value of the data-driven approach clearly being its capacity for empirical interrogation 

of the assumptions underpinning model construction. 

2. The logic behind p* models for social networks – an outline1 

We describe as the observed network the network data the researcher has 

collected and is interested in modeling.  The observed network is regarded as one 

                                                 
1 For other introductions to the logic of p* modeling, see Monge and Contractor (2003), and Contractor, 

Wasserman and Faust (in press). 
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realization from a set of possible networks with similar important characteristics (at the 

very least, the same number of actors), that is, as the outcome of some (unknown) 

stochastic process.  In other words, the observed network is seen as one particular 

pattern of ties out of a large set of possible patterns.  In general, we do not know what 

stochastic process generated the observed network, and our goal in formulating a model 

is to propose a plausible and theoretically principled hypothesis for this process   

For instance, one of our research questions may be whether in the observed 

network there are significantly more, or less, structural characteristics of interest than 

expected by chance. We might see these characteristics as the outcomes of local social 

processes. For example, we might ask – as Moreno and Jennings (1938) did in one of 

the first applications of statistics to social networks – whether the observed network 

shows a strong tendency for reciprocity, over and above the chance appearance of a 

number of reciprocated ties if relationships occurred completely at random. In other 

words, do actors in the observed network tend to reciprocate relationship choices?  Here 

the structural characteristic (reciprocated ties) is the outcome of a social process 

(individuals choosing to reciprocate the choices of others.)  Thus, as a simple example, 

we might posit a stochastic network model with two parameters, one that reflects the 

propensity for ties to occur at random and one that reflects an additional propensity for 

reciprocation to occur. 

In general, the structural characteristics in question help to shape the form of the 

model. An assumption of a reciprocity process leads us to propose a model in which an 

index of the level of reciprocity is a parameter.  The assumption also reflects an 

expectation about what sort of networks are more likely. A statistical model for a 

network on a given set of actors assigns a probability to all possible networks on those 

actors. For instance, since reciprocity of ties is a commonly observed feature in 

friendship networks, a good model is likely to imply that networks with reciprocation 

are more common and networks without reciprocation are rather improbable. 

As is usual, we represent networks as graphs of nodes and edges. For a given 

model, the node set is regarded as fixed.  The range of possible networks, and their 

probability of occurrence under the model, is represented by a probability distribution 

on the set of all possible graphs with this number of nodes. In this distribution of 

graphs, those graphs with substantial levels of reciprocation are likely to have higher 

probability than graphs with little reciprocation, with the precise probabilities depending 

on the value of relevant parameters, such as a reciprocity parameter. Note that the 
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observed network is a particular graph in this distribution and so it also has a particular 

probability. 

Of course, at the outset, we do not know which parameter values to use in 

assigning probabilities to graphs in the distribution. Our goal, rather, is to find the best 

values (by estimating model parameters) using the observed network as a guide. The 

essential maximum likelihood criterion is to choose parameter values in such a way that 

the most probable degree of reciprocation is that which occurs in the observed network. 

If the model has a reciprocity parameter (defined to be zero when reciprocal ties occur 

by chance), and if there are many reciprocated ties in the observed network, then a 

model that is a good fit to the data in terms of degree of reciprocation will have a 

positive reciprocity parameter.  If we estimate a reciprocity parameter for the observed 

network, and if we can be confident that this parameter is positive, we may infer that 

there is more reciprocity in the observed network than expected by chance. 

Once we have defined a probability distribution on the set of all graphs with a 

fixed number of nodes, we can also draw graphs at random from the distribution 

according to their assigned probabilities, and we can compare the sampled graphs to the 

observed one on any other characteristic of interest.  If the model is a good one for the 

data, then the sampled graphs will resemble the observed one in many different 

respects.  In this ideal case, we might even hypothesize that the modeled structural 

effects could explain the emergence of the network.  And we can examine the properties 

of the sampled graphs in order to understand the nature of networks that are likely to 

emerge from these effects.  

As an example, consider friendship in a school classroom. The observed 

network is the network for which we have measured friendship relations. There are 

many possible networks that could have been observed for that particular classroom. 

We examine the observed friendship structure in the classroom in the context of all 

possible network structures for the classroom. Some structures in the classroom may be 

quite likely and some very unlikely to happen, and the set of all possible structures with 

some assumption about their associated probabilities is a probability distribution of 

graphs. We are placing the observed network within this distribution, rather than 

comparing the observed network to friendship networks in other classrooms. (Of course, 

our model for the observed network may also be a good model for other classrooms but 

that is not the issue at this point.)  
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Note that the assumption is that the network is generated by a stochastic process 

in which relational ties come into being in ways that may be shaped by the presence or 

absence of other ties (and possibly node-level attributes).  In other words, the network is 

conceptualized as a self-organizing system of relational ties. Substantively, the claim is 

that there are local social processes that generate dyadic relations, and that these social 

processes may depend on the surrounding social environment (i.e. on existing relations).  

For example, we can assume that actors with similar attributes are more likely to form 

friendship ties (homophily), or that if two unconnected actors were connected to a third 

actor, at some point they are likely to form a friendship tie between them (transitivity). 

Note that in addition to the assumption of stochasticity, this description is also 

implicitly temporal and dynamic. 

2.1 A general framework for model construction 

In positing an exponential random graph model for a social network, a 

researcher implicitly follows five steps. While the focus of research is on the final step 

of parameter estimation and interpretation, it is through all the five steps that a 

researcher makes explicit choices that connect theoretical decisions to data analysis. 

And as shown below, it is through these earlier steps that we can locate certain earlier 

network models within the rubric of exponential random graph models.  

 

Step 1. Each network tie is regarded as a random variable.  

This step implies a stochastic framework with a fixed node set. By assuming that 

a tie is a random variable we do not imply that people form relations in an ad hoc 

fashion: some relationships might be highly probable.   Rather, we are simply stating 

that we do not know everything about relationship formation, that our model is not 

going to make perfect deterministic predictions, and that as a result there is going to be 

some statistical “noise”, or lack of regularity, that we cannot successfully explain.  

With possible network ties established as random variables, it is timely to review 

some basic notation. For each i and j who are distinct members of a set N of n actors, we 

have a random variable Yij where Yij = 1 if there is a network tie from actor i to actor j, 

and where Yij = 0 if there is no tie. We specify yij as the observed value of the variable 

Yij and we let Y be the matrix of all variables with y the matrix of observed ties, the 

observed network. Of course, y can also be construed as a graph on the node set N, with 

the edge set specified by those pairs (i,j) for which yij = 1. Y may be directed (in which 
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case Yij is distinguished from Yji) or non-directed (where Yij = Yji and the two variables 

are not distinguished.)  It is also possible for y to be valued, although for this article we 

will restrict attention to binary ties. 

 

Step 2. A dependence hypothesis is proposed, defining contingencies among the 

network variables.  

This hypothesis embodies the local social processes that are assumed to generate 

the network ties. For instance, ties may be assumed to be independent of each other, that 

is, people form social connections independently of their other social ties. This is not 

usually a very realistic assumption. In the example of the school classroom with 

reciprocity processes in place, if student A likes student B, then student B will quite 

probably like student A implying some form of dyadic dependence. Ties may also 

depend on node-level attributes (see section 4.4 below), with for instance possible  

homophily effects in the classroom. Notice that each of these processes can be 

represented as a small-scale graph configuration: for instance, a reciprocated tie, or a tie 

between two girls.  

 

Step 3. The dependence hypothesis implies a particular form to the model.   

It can be proven that well-specified dependence assumptions imply a particular 

class of models (the Hammersley-Clifford theorem, Besag, 1974). Each parameter 

corresponds to a configuration in the network, that is, a small subset of possible 

network ties (and/or actor attributes – although that is for later). These configurations 

are the structural characteristics of interest (e.g. reciprocated ties), referred to above. 

The model then represents a distribution of random graphs which are assumed to be 

“built up” from the localized patterns represented by the configurations.  For instance, a 

single tie is a configuration, as may be a reciprocated tie (in a directed graph), a 

transitive triad and a two-star. Parameters related to the presence of each of these 

configurations in the observed graph may be included in a model. 

Dependence assumptions and the general form of the model are discussed in 

section 3 below.  Particular dependence assumptions are presented in section 4. 

 

Step 4. Simplification of parameters through homogeneity or other constraints. 

In order to define a model clearly, we need to reduce the number of parameters. 

This is often done by imposing homogeneity constraints. In effect, we ask whether some 
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parameters should be equated or related in other ways. For instance, we usually propose 

one parameter for a reciprocity effect across the entire network, by assuming that the 

reciprocity parameters for each possible reciprocated tie are all equal.  Parameter 

constraints for particular models are illustrated in section 4. 

 

Step 5. Estimate and interpret model parameters:   

Of course, estimation and interpretation are usually a focus of particular research 

applications, but reaching this step implies that the other four have already been 

undertaken, even if only implicitly.  This step is complicated if the dependence structure 

is complex, as it probably needs to be for any realistic model.  Having obtained 

parameter estimates, as well as estimates of the uncertainty of estimation, we may then 

take full advantage of having a statistical model for the network that is constructed from 

specifiable dependence assumptions and that is estimated from observed network data.  

For example, we can explore the range of network outcomes predicted by the model, a 

step that can be very helpful in assessing how good the model is, and we can make 

inferences about model parameters.  For instance we can infer whether any model 

parameter is significantly different from zero and so whether the corresponding 

configuration is present in the observed graph to a greater or lesser extent than expected 

by chance, given other parameter values. We discuss parameter estimation in section 5. 

 

3. The general form of the exponential random graph model: Dependence 

assumptions and parameter constraints 

Exponential random graph models have the following form: 

 Pr(Y = y) = (1/κ) exp{ΣA ηAgA(y)} (1) 

where: 

(i) the summation is over all configurations A; 

(ii) ηA is the parameter corresponding to the configuration A (and is nonzero 

only if all pairs of variables in A are assumed to be conditionally dependent)2; 

(iii) ( )
ij

A ijy A
g y

∈
=∏y  is the network statistic corresponding to configuration A; 

 gA(y) = 1 if the configuration is observed in the network y, and is 0 otherwise3;  

                                                 
2 i.e. conditional on the rest of the graph. 
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 (iv) κ  is a normalizing quantity which ensures that (1) is a proper probability 

distribution.4 

All exponential random graph models are of the form of equation (1) which 

describes a general probability distribution of graphs on n nodes.  The probability of 

observing any particular graph y in this distribution is given by the equation, and this 

probability is dependent both on the statistics gA(y) in the network y and on the various 

non-zero parameters ηA for all configurations A in the model. Configurations might 

include reciprocated ties, transitive triads and so on, so the model enables us to examine 

a variety of possible structural regularities.   

So why are dependence assumptions important here?  Dependence assumptions 

have the consequence of picking out different types of configurations as relevant to the 

model. Note from point (ii) above, parameters are zero whenever variables in a 

configuration are conditionally independent of each other.  In other words, the only 

configurations that are relevant to the model are those in which all possible ties in the 

configuration are mutually contingent on each other.5  

It is worth noting that if a set of possible edges represents a configuration in the 

model, then (1) implies that any subset of possible edges is also a configuration. Thus,  

single edges are always configurations, as demonstrated in section 4. 

So the dependence assumption is crucial in constraining which configurations 

are possible in the model. We will discuss particular examples in section 4. A 

configuration A refers to a subset of tie variables, and corresponds to a small network 

substructure.  For instance, if for a directed network we apply a dyadic dependence 

assumption (see section 4) it will follow that reciprocity parameters will be in the 

model.  In this case, one configuration in the model is the set of variables {Y12, Y21}, 

                                                                                                                                               
3 We write gA(y), rather than gA, to remind ourselves that the statistics relate to the graph y. 
4 It is possible to assert a model of the form of (1) by incorporating more general statistics than 

configuration and subgraph counts (see Wasserman & Pattison, 1996). But then dependence assumptions 

may not be clear.  Our preference is for an explicit dependence structure in order to be able to link the 

model to interpretations regarding local social processes. 
5 More technically, the dependence assumptions may be represented in a dependence graph, first 

introduced into the network literature by Frank & Strauss (1986), following the approach described by 

Besag (1974).  The configurations A are represented by the cliques of the dependence graph. Interested 

readers should consult Frank and Strauss (1986) for further details; see also the review by Robins and 

Pattison (2005).   
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another is {Y13, Y31}, and so on, with every dyad providing its own configuration.  

Obviously for any of these configurations, if both of the ties are present in the observed 

graph, we see a reciprocated tie, so the configuration represents a type of network 

substructure that may be observed in the graph y. We can think of this configuration 

diagrammatically as that substructure, i.e. a reciprocated tie.  

But of course there is no guarantee that all possible edges in a given 

configuration will be present in a realized graph y, so we will observe some of these 

possible substructures but not others. Some ties will be reciprocated, some will not. 

Configurations represent possibilities. The graph statistic, gA(y), on the other hand, tells 

us whether the configuration A is in fact observed in the network y.  For a reciprocity 

configuration A, that statistic simply tells us whether there are reciprocated ties between 

the relevant pair of nodes or not. 

We can think of the graphs in the distribution as being generated by these 

potentially overlapping configurations. For instance, suppose there is a reciprocity effect 

at work in the process generating the network.  If we could observe the evolution of the 

network, and if the network started with few reciprocated ties, we might expect to see 

more reciprocated ties emerge over time. In thinking this way, though, we need to bear 

in mind that as a particular tie emerges through an imagined process of generation, its 

presence may affect other potential neighboring ties.  So there is an implicitly dynamic 

and self-organizing quality to this hypothetical construction process: as one tie emerges 

or disappears, other neighboring ties are likely to emerge or disappear as well, and there 

may be no natural endpoint to this ongoing stochastic process. Nonetheless, the strength 

and direction of any particular parameter value will affect how frequently the 

corresponding configuration is observed. If the parameter is large and positive, we 

expect to observe the corresponding configuration in graphs in distribution (1) more 

frequently than if the parameter were zero. So if a reciprocity parameter were large and 

positive, we would expect to see many reciprocated ties in the observed network. 

Likewise, when a parameter is large and negative we expect to see the configuration 

(e.g., reciprocated ties) relatively less frequently than if the parameter is zero. 

Because (1) has an exponential term in the right hand side, such distributions 

have been referred to as exponential random graph models. The Markov random graphs 

of Frank and Strauss (1986) are one particular class of exponential random graph 

models. The network analytic community also refers to the exponential random graph 
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model class as p* models because they are a generalization of dyadic independence 

models, of which p1 models (Holland & Leinhardt, 1981) were a popular early example. 

3.1 Constraints on parameters 

Notice that equation (1) refers to different configurations for sets of different 

nodes. For instance, for models with reciprocity there is a separate configuration for 

{Y12,Y21}, for {Y13,Y31}, and so on.  In this general form, then, the model implies many 

parameters. For instance, there are n(n – 1)/2 parameters relating to reciprocity alone.   

This is simply too many parameters and the model cannot be estimated from a 

single network observation. Some parameters need to be set to zero, equated or 

otherwise constrained. Following Frank and Strauss (1986), we often impose a 

homogeneity assumption by equating parameters when they refer to the same type of 

configuration.  For instance, in considering reciprocity, Paul may tend very strongly to 

reciprocate friendship offers from others, but Mary might be more cautious.  For the 

purpose of constructing a simpler model, however, we may assume that there is a single 

tendency for reciprocity shared by both Mary and Paul.  The resulting error is then 

consumed into the model as statistical noise. This approach assumes that certain 

regularities are the same for the entire network, for example, that there is a single 

tendency for reciprocity across the network, irrespective of which nodes are involved.  

We term this homogeneity of isomorphic network configurations, where parameters are 

equated if the configurations are the same when we ignore the labels on the nodes (in 

which case the configurations are said to be isomorphic).  A less radical assumption is 

also possible: for instance, if we were able to measure whatever characteristics of 

individuals incline them to reciprocate ties, we could allow the reciprocity effect to 

depend on those node characteristics. 

When we make this homogeneity assumption, we produce a model with the 

same form as equation (1) but now the (isomorphic) configurations refer to generic 

effects (e.g. the overall reciprocity effect.) The statistics then become the counts of the 

corresponding configurations in the network (e.g. the number of reciprocated ties). 

But there are several other ways in which constraints on the parameters may be 

applied, and different constraints result in different models. Another method of applying 

constraints may be to equate parameters for isomorphic configurations involving similar 

types of actors.  For example, in the case of reciprocity in classroom friendship 
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networks, we could propose one reciprocity parameter for girl-girl configurations, one 

for girl-boy configurations and another for boy-boy configurations.  

Even with sensible homogeneity constraints in place the model may still have 

too many parameters to be estimable. In that case, we might consider limiting the 

number of configurations by setting some parameters to zero (see section 4.3), or by 

introducing hypothesized constraints on the values of parameters associated with larger 

configurations (as proposed by Snijders et al, 2006 – see section 4.8). 

4. Dependence assumptions and models 

4.1 Bernoulli graphs: the simplest dependence assumption 

Bernoulli random graph distributions are generated when we assume that edges 

are independent, for instance if they occur randomly according to a fixed probability α 

(see Erdös & Renyi, 1959; Frank & Nowicki, 1993). The dependence assumption is 

simple in this case: all possible distinct ties are independent of one another. We noted 

above that the only configurations relevant to the model are those in which all possible 

ties in the configuration are conditionally dependent on each other. When all possible 

ties are independent, the only possible configurations relate to single edges {Yij}. So 

from (1) the general model is: 

Pr(Y = y) = (1/κ) exp(Σi,j ηij yij) 

Note that compared to (1) every set A comprising a single possible edge Yij is a 

configuration in this model, and there is a parameter ηij for each of these configurations.  

The network statistic gA(y) = gij(y) = yij tells us whether that configuration is observed 

or not.  If we impose a homogeneity assumption so that the effect for each tie is 

identical we equate parameters such that ηij= θ for all i and j, hence: 

 Pr(Y = y) = (1/κ) exp(θ L(y)) (2) 

where L(y)=Σi,j  yij is the number of arcs in the graph y, and the parameter θ is related to 

the probability of a tie being observed.6 The parameter θ is called the edge or density 

parameter.   

                                                 
6 Specifically, α = expθ/(1+expθ). The homogeneity assumption means that there is a fixed probability 

for all possible edges across the graph, i.e. that there is a single α. 
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There are other possibilities for imposing homogeneity.  Suppose we have actors 

in two a priori blocks and we impose block homogeneity, so that ηij= θ11 if both i and j 

are in block 1, ηij= θ12 if i is in block 1 and j in block 2, and so on. Then it is simple to 

show that  

Pr(Y = y) = (1/κ) exp(θ11 L11(y) + θ12 L12(y) + θ21 L21(y) + θ22 L22(y)) 

where L11(y) is the number of arcs within the first block, L12(y) is the number of arcs 

from block 1 to block 2, and so on. 

4.2 Dyadic models: the dyadic independence assumption 

A somewhat more complicated (but not usually very realistic) assumption for 

directed networks is that dyads, rather than edges, are independent of one another. With 

this dependence assumption we have two types of configurations in the model, single 

edges and reciprocated edges.  With homogeneity imposed, the model then becomes: 

 Pr(Y = y) = (1/κ) exp(θ Σi,j yij + ρ Σi,j  yij yji )= (1/κ) exp(θ L(y) + ρ M(y) ) (3) 

where L(y) is the number of ties in y and M(y) =Σi,j  yij yji is the number of mutual ties in 

y.  A slightly more complex homogeneity assumption results in the p1 model of Holland 

and Leinhardt (1981).   

Related but more complex and realistic models include the p2 model (Lazega & 

van Duijn, 1997; Van Duijn, Snijders & Zijlstra, 2004) which assumes dyadic 

independence but conditional on node-level attribute effects. The p2 model is 

appropriate when structure is expected to arise from attributes. It is an extension of the 

p1 model with sender and receiver effects treated as random effects and with actor and 

dyadic effects included. The more complex assumptions underpinning this model make 

it more realistic for actual network data, especially when attribute effects are expected 

to be strong.  It differs from usual exponential random graph models in the 

incorporation of random effects. 

Of course, in the case of non-directed networks, Bernoulli and dyad dependence 

models are identical: for non-directed networks, the reciprocity parameter ρ in equation 

(3) is irrelevant and the model reduces to that of equation (2).   

4.3 Markov random graphs 

Bernoulli and dyadic dependence structures are unrealistic assumptions in many 

circumstances, both empirically and theoretically. Frank and Strauss (1986) introduced 
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Markov dependence, in which a possible tie from i to j is assumed to be contingent on 

any other possible tie involving i or j, even if the status of all other ties in the network is 

known. In this case, the two ties are said to be conditionally dependent, given the values 

of all other ties7.  Markov dependence can be characterized as the assumption that two 

possible network ties are conditionally dependent when they have a common actor. For 

instance, the relationship between Peter and Mary may well be dependent on the 

presence or absence of a relationship between Mary and John (especially if the 

relationship is a romantic one!)  We can express this more formally by assuming 

conditional dependence between the possible ties Ypm and Ymj. These two possible ties 

are conditionally dependent because they share the node m (Mary). 

If we also assume homogeneity, we obtain the Markov random graph model, 

with configurations (and associated parameters) for directed and non-directed networks 

presented in Figure 1. These parameters relate to some well-known structural 

regularities in the network literature. For directed networks, we have already seen the 

edge (τ15) and reciprocity (τ11) parameters from the Bernoulli and dyadic independence 

models. There are various two-star effects: the two-out-star parameter (τ12) can be 

thought of as relating to expansiveness, the two-mixed-star parameter (τ13) relates to 

two-paths, and the two-in-star parameter (τ14) relates to popularity. Note the important 

transitivity and cyclic configurations (τ9 and τ10).  The inclusion of these parameters is a 

strength of these models because there is a paucity of network models that incorporate 

these effects (Newman, 2003), and very few indeed that are estimable from data. The 

full parameter set includes all possible higher order stars as well, although if all such 

stars are included there are too many parameters for the model to be estimable. 

Although some early applications of the Markov random graph model included only 

two-star effects, it is now known that it may be important to include a non-zero 

parameter for at least the three-star effect in models for many social networks (Robins, 

Pattison & Woolcock, 2004, 2005). An alternative approach (see below) includes all 

higher-order star parameters but imposes constraints on the relationships between 

higher-order star parameters and lower-order ones.   

For example, a Markov random graph model for a non-directed network with 

edge, 2-star, 3-star, and triangle effects is: 

                                                 
7 If two ties are conditionally dependent, then if the value of one tie changes, the probability of the other 

tie is affected, even if all other ties in the network remain the same.   
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 Pr(Y = y) = (1/κ) exp(θ L(y) + σ2 S2(y) + σ3 S3(y) + τ T(y) ) (3) 

where S2(y) and S3(y) are the numbers of 2-stars and 3-stars, respectively, in the 

network y, and T(y) the number of triangles in y.  Note that for Markov random graphs, 

it is also possible to include parameters for stars of higher order than 3 (4-stars, 5-stars, 

etc.). The model in equation (3) is an example of how we might set certain higher order 

parameters to zero (section 3.1). In this case, we are assuming that the distribution of 

stars (in effect, the degree distribution) can be adequately explained by the 2- and 3-star 

effects.8   

 

Insert Figure 1 about here 

 

It should be noted that the statistics in the Markov model are often related to 

each other, in the sense that some are higher-order to others. For instance, suppose there 

is a 3-star in a non-directed network centered on node i. Then it is also the case that 

there are three 2-stars (and 3 edges) also centered on i.  This is analogous to higher 

order interactions in more familiar general linear model procedures.  This is an 

important feature of the model that assists interpretation. If, for instance, a network has 

many 2-stars present, then some will form triangles just by chance.  But if there is a 

substantial triangle effect in a Markov random graph model, this is over and above any 

2-star effect, and we can infer that the level of triangulation did not occur simply 

because of the chance overlapping of many 2-stars (or indeed of many edges).  In that 

case, we would infer that triangulation was an important process in this network, 

independently of other effects.   

Several elaborations of this basic Markov random graph model have also been 

developed: for multivariate networks (Pattison & Wasserman, 1999); for valued 

networks (Robins, Pattison & Wasserman (1999); and for affiliation networks (Skvoretz 

& Faust, 1999; see also Pattison & Robins, 2004). 

                                                 
8 To be confident about this, we could simulate a distribution of graphs from a fitted model and inspect 

the degree distributions as compared to the observed network.  Examples of such goodness of fit 

diagnostics are presented in other papers in this special edition. 
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4.4 Dependence structures with node-level variables 

There are various ways of introducing node-level effects (actor attributes) into 

Markov and other exponential random graph models. We assume a vector X of binary 

attribute variables with Xi = 1 if actor i has the attribute and Xi = 0, otherwise. The 

vector x is then the set of observations on X. It is possible to generalize to polytomous 

and continuous attribute measures but we will restrict the current discussion to binary 

attributes. Here, as an example, we briefly describe social selection models where 

attributes are assumed to be exogenous predictors of network ties (Robins, Elliott & 

Pattison, 2001).9 We can investigate a similarity or homophily hypothesis as a basis for 

social selection – that social ties tend to develop between actors with the same attributes 

– by looking at the distribution of ties given the distribution of attributes. In other 

words, as distinct from equation (1), our interest is in the probability of the graph y 

given the observations of attributes x, that is, Pr(Y = y | X = x).   

A simple dependence assumption between the attribute and network variables is 

that the attribute of i influences possible ties that involve i (i.e., Yij), referred to as a 

Markov attribute assumption. For example, in an organizational setting, an actor’s 

seniority (say, senior management versus junior management) may influence the 

possible ties of that actor. If we consider Markov attributes along with Markov network 

dependencies, for a non-directed network the model contains the configurations (up to 

three-stars) shown in Figure 2, with a filled node representing an actor who has the 

attribute seniority (i.e., the actor is a senior manager), and an empty node (with dotted 

line) just representing an actor, irrespective of whether junior or senior. In other words, 

the configuration (A) represents tendencies for senior managers to have ties with each 

other; whereas the configuration (B) represents the tendency for a senior manager to 

have many ties, and so on.  A large positive parameter estimate for configuration (A) is 

evidence for homophily effects in the network. 

It is notable from Figure 2 that the only higher order configuration with 

attributes is that of a two- or three-star, with the actor with the attribute at the centre of 

the star. To produce triangle configurations with attribute variables requires additional 

dependence assumptions.   

                                                 
9 Another method to incorporate actor attributes is through social influence models, where network ties 

were taken as exogenous predictors of attributes (Robins, Pattison & Elliott, 2001).  
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Figure 2 about here 

4.5. More complex dependence assumptions 

Elaborations of exponential random graph models that go beyond Markov 

random graphs have been developed. Pattison and Robins (2002) presented two 

innovations. With setting structures, they confined dependencies within social settings. 

Drawing on Feld (1981), they suggested as possible examples settings based on a 

spatiotemporal context, such as a group of people gathered together at the same time 

and place; settings based on a more abstract sociocultural space, such as pairs of persons 

linked by their political commitments; and settings that reflect external “design” 

constraints, such as organizational structure.   

An additional motivation to introduce settings is that Markov dependence seems 

unrealistic for large networks, where individual actors may not even be aware of each 

other, and have no means to come into contact, yet their possible tie still is taken to 

influence other possible ties. If the setting structure hypothesis is well founded, there are 

implications for the type of data that needs to be collected for a full understanding of a 

social network.  For further elaborations, see also Schweinberger and Snijders (2003). 

A second direction presented by Pattison and Robins (2002) was to propose non-

Markov dependencies among ties that did not share an actor but might be 

interdependent through third party links. For instance, Yij may be conditionally 

dependent on Yrs for four distinct actors if there is an observed tie between either i or j 

and either r or s. These realization-dependent models can be developed through what 

Pattison and Robins (2002) described as partial dependence structures. These models 

also permit the introduction of triangles involving attribute effects. 

4.6 New model specifications 

There is mounting evidence that homogeneous Markov random graph models 

are not good models for many observed social networks (see section 5.2 below), so 

these models are not always useful in practical terms.  Based on realization-dependence 

structures, Snijders et al (2006) developed new specifications for exponential random 

graph models that include new higher order terms. These models introduce constraints 

on k-star parameters, as well as new higher-order k-triangle configurations which allow 

for the measurement of highly clustered regions of the network where two individuals 

may be connected to a large number of k others (a k-triangle). For these models, many 
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higher order star and triangle effects are included (rather than set to zero) but they are 

constrained in the form of a weighted sum with alternating signs. The motivation behind 

these innovations, and the success of these new model specifications, are discussed in 

other papers in this special edition. 

 

5. Estimation 

Anderson et al. (1999) in their p* primer used pseudo-likelihood estimation 

introduced by Strauss and Ikeda (1990) in order to estimate the parameters of Markov 

models. We now know that, depending on the data, there may be serious problems with 

pseudo-likelihood estimates for these models.  But for Markov random graph models, 

standard maximum likelihood estimation is not tractable for any but very small 

networks, because of the difficulties in calculating the normalizing constant in equation 

(1). What this means is that standard statistical techniques cannot be applied to these 

models.  These problems have been overcome in recent times by the development of 

new Monte Carlo maximum likelihood techniques. We begin by making some rather 

brief comments about pseudo-likelihood and then introduce the new estimation 

approaches. 

5.1 Pseudo-likelihood estimation: an approximate technique 

The use of maximum pseudo-likelihood to estimate interactive models was first 

proposed by Besag (1975), and was suggested for Markov random graph models by 

Strauss and Ikeda (1990).  In the general statistical community, pseudo-likelihood has 

given way to Monte Carlo techniques where feasible, although it still has its adherents 

(see Wasserman & Robins, 2005, for some of the literature.) The advantage of pseudo-

likelihood estimation in the context of exponential random graph models is that it is 

relatively easy to fit even complicated models. The disadvantage is that the properties of 

the estimator are not well understood and it is known that for many data sets pseudo-

likelihood estimates are not accurate.  

Pseudo-likelihood estimation is best understood by transforming equation (1) – 

the joint form of the model – into the following equivalent conditional form (see Strauss 

and Ikeda, 1990, for more detail): 
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where: 

(1) The sum is over all configurations A that contain Yij; 

(2) ηA is the parameter corresponding to configuration A; 

(3) dA (y) is the change statistic; the change in the value of the network statistic 

zA(y) when yij changes from 1 to 0; 

(4) yij
C is all the observations of ties in y except the observation yij. 

The calculation of the change statistic has been discussed extensively by a 

number of authors (Anderson et al, 1999; Pattison & Robins, 2002; Wasserman & 

Pattison, 1996; Wasserman & Robins, 2005), so we do not go into it further here. With 

the change statistics calculated, to produce the pseudo-likelihood estimates, each 

possible tie Yij becomes a case in a standard logistic regression procedure, with yij 

predicted from the set of change statistics (Anderson et al, 1999).  

This procedure looks like a logistic regression – or indeed, a loglinear model – 

but it is not. Logistic regression assumes independent observations, an assumption we 

explicitly do not make with Markov and higher order models. So the parameter 

estimates may be biased; and the standard errors are approximate at best, and may be 

too small. One should not rely on the Wald statistic as a means to decide whether a 

parameter is significant or not. As well, one cannot assume that the pseudo-likelihood 

deviance is asymptotically distributed as chi-squared (which would be the case in 

normal logistic regression).  When the dependence among observations is not so strong, 

it is generally the case that PL estimates will be more accurate.  Pseudo-likelihood 

estimation has been used to date as a pragmatic convenience (given that alternatives 

have not hitherto been readily available) and the method does not have a principled 

basis. Whenever possible, the preferred option is to use Monte Carlo estimation 

procedures.  

5.2  Markov Chain Monte Carlo maximum likelihood estimation 

(MCMCMLE) 

Important recent developments in Monte Carlo estimation techniques for 

exponential random graph models have been presented and reviewed by a number of 

authors (see Snijders, 2002; Handcock, Hunter, Butts, Goodreau & Morris, 2004; 

Snijders et al, 2006; Wasserman and Robins, 2005), and are further discussed in other 

articles in this special edition, so we include only a brief summary here.   
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To begin, we note that simulation of these models can be implemented in a 

relatively straightforward way. Without going into details, simulation of the graph 

distribution for a given set of parameter values can be achieved through a number of 

algorithms (e.g. algorithms well-known in statistics more generally, such as the 

Metropolis algorithm).  Simulation is at the heart of Monte Carlo maximum likelihood 

estimation. Procedures for simulating exponential random graph distributions have been 

described by Strauss (1986), Snijders (2002), and Robins, Pattison and Woolcock 

(2005).  

Although there are variations between different Monte Carlo estimation 

techniques (Snijders, 2002; Hunter & Handock, 2006), they are based on the same 

central approach: simulation of a distribution of random graphs from a starting set of 

parameter values, and subsequent refinement of the parameter values by comparing the 

distribution of graphs against the observed graph, with this process repeated until the 

parameter estimates stabilize. Recent software that implements Monte Carlo maximum 

likelihood estimation for exponential random graph models is reviewed in other papers 

in this special edition. 

Both estimation and simulation studies have raised issues of model specification 

for Markov random graphs. Handcock (2003) defined near degeneracy as occurring 

when a model implied that only a few graphs had other than very low probability (often 

these were the full graph or the empty graph).  If a model implies only these rather 

uninteresting outcomes, it will not be useful for modeling real networks. Simulation 

studies suggest that Markov graph models that contain at least non-zero three-star 

parameters tend to exhibit less near degeneracy than those with two-stars as the highest 

order non-zero star parameter (Robins et al, 2005). But the inclusion of three-star 

parameters often is not sufficient to remove near degeneracy behavior in Markov graph 

models, particularly when attempting to find models that reproduce the high levels of 

transitivity often observed in human social structures (there is an extended discussion in 

Snijders et al, 2006). The fact that these problems may not occur for pseudo-likelihood 

estimation simply means that for near degenerate models, pseudo-likelihood estimates 

may be particularly misleading.  The primary problem in these cases is that the model is 

not well-specified. 

The bottom line is that various Monte Carlo estimation techniques are now 

available and, wherever practicable, are to be preferred. These new approaches highlight 

certain inadequacies in Markov random graph models when, for instance, transitivity 
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effects are strong.  If this does happen for a given data set, researchers fitting Markov 

random graph models will notice that it is impossible to obtain consistent parameter 

estimates with Monte Carlo maximum likelihood estimation (technically, the estimation 

process does not converge.)  This means that the Markov graph models are 

inappropriate for the data.  It is for such reasons that Snijders et al (2006) introduced 

their new specifications for exponential random graph models, mentioned in section 4.6, 

and discussed in other papers in this special edition. 

6. A short example: A Markov random graph model for Medici business network 

Other papers in this special edition provide examples of fitting exponential 

random graph models to data, so here we present a very short example. We fit a Markov 

random graph model for the well-known non-directed network of business connections 

among 16 Florentine families, available in UCINET 5 (Borgatti, Everett, & Freeman, 

1999). (For a fuller description of the context of the data, see Padgett and Ansell, 1993.) 

The model includes edge, two-star, three-star and triangle parameters as in Equation (3). 

This model is not degenerate for this data set and parameter estimates successfully 

converge. MCMCMLE parameter estimates are presented in Table 1.  We see that the 

density and triangle parameters are substantial in magnitude in comparison with their 

standard errors.10 Interpretation is therefore relatively simple. The negative density 

parameter indicates that edges occur relatively rarely, especially if they are not part of 

higher order structures such as stars and triangles.  The positive triangle parameter can 

be interpreted as providing evidence that the business ties tend to occur in triangular 

structures and hence to cluster into clique-like forms. The star effects are not significant, 

so perhaps do not merit interpretation. But the parameter values suggest that there is a 

tendency for multiple network partners (the positive 2-star estimate) but with a ceiling 

on this tendency (the negative 3-star parameter). So, while there is tendency for network 

actors to have multiple partners, there are few actors with very many partners. 

Table 1 about here. 

                                                 
10 The distribution of the statistic formed as the ratio of the estimate to its standard error is not known, but 

likely to approximate a t distribution (Snijders, 2002).  As a result, ratios exceeding two in absolute 

magnitude suggest non-zero effects.  
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7. Conclusion 

This article provides an introductory exposition of the formulation and 

application of exponential random graph models for social networks.  We have 

concentrated on presenting the underlying logic and derivation of these models.  Given 

the limitations of space, we have only given summary attention to more recent 

developments which will be discussed in other papers in this special edition. 

Recent work on the Markov random graph models of Frank and Strauss (1986) 

shows that they may be inadequate for many observed networks.  In reviewing 

developments in these models to this point, we have deliberately made no more than 

very summary comments on improved model specification.  The new specifications of 

Snijders et al (2006) offer substantial improvement in the practical use of exponential 

random graph models. They also indicate a way forward to developing other innovative 

specifications. One of our aims in this paper has been to lay the groundwork for an 

understanding of these new developments, which are given a fuller exposition in other 

papers in this special edition.  
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Figure 1 

Configurations and parameters for Markov random graph models 
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Figure 2 

Configurations for a Markov attribute-Markov graph social selection model 
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Table 1 

Parameter estimates for Markov graph model: Florentine families business network 

 (Maximum likelihood estimates with standard errors in brackets) 

 

 Parameter Configuration Estimate (standard error) 
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σ3 
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-4.27 (1.13) 

 

1.09 (0.65) 

 

-0.67 (0.41) 

 

 

1.32 (0.65) 


